On $MP$-closed saturated formations of finite groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 9-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of groups $\mathfrak{F}$ is called $MP$-closed, if it contains every group $G=AB$ such that $\mathfrak{F}$-subgroup $A$ permutes with every subgroup of $B$ and $\mathfrak{F}$-subgroup $B$ permutes with every subgroup of $A$. We prove that the formation $\mathfrak{F}$ containing the class of all supersoluble groups is $MP$-closed if and only if the formation $F(p)$ is $MP$-closed for all prime $p$, where $F$ is maximal integrated local screen of $\mathfrak{F}$. In particular, we prove that the formation of all groups with supersoluble Schmidt subgroups is $MP$-closed.
Keywords: finite group, product of mutually permutable subgroups, saturated formation, $MP$-closed formation, local screen.
@article{IVM_2017_6_a1,
     author = {A. F. Vasil'ev and T. I. Vasil'eva and D. N. Simonenko},
     title = {On $MP$-closed saturated formations of finite groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--17},
     publisher = {mathdoc},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_6_a1/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - T. I. Vasil'eva
AU  - D. N. Simonenko
TI  - On $MP$-closed saturated formations of finite groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 9
EP  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_6_a1/
LA  - ru
ID  - IVM_2017_6_a1
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A T. I. Vasil'eva
%A D. N. Simonenko
%T On $MP$-closed saturated formations of finite groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 9-17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_6_a1/
%G ru
%F IVM_2017_6_a1
A. F. Vasil'ev; T. I. Vasil'eva; D. N. Simonenko. On $MP$-closed saturated formations of finite groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 9-17. http://geodesic.mathdoc.fr/item/IVM_2017_6_a1/

[1] Fitting H., “Beiträge zur Theorie der Gruppen endlichen Ordnung”, Jahresber. Deutsch. Math.-Verein., 48 (1938), 77–141

[2] Bryce R. A., Cossey J., “Fitting formations of finite soluble groups”, Math. Z., 127:3 (1972), 217–233 | DOI | MR

[3] Amberg B., Kazarin L. S., Khefling B., “Konechnye gruppy s kratnymi faktorizatsiyami”, Fundament. i prikl. matem., 4:4 (1998), 1251–1263 | Zbl

[4] Vasilev A. F., “Ob abnormalno faktorizuemykh konechnykh razreshimykh gruppakh”, Ukr. matem. zhurn., 54:9 (2002), 1163–1171 | Zbl

[5] Vasil'ev A. F., “On products of nonnormal subgroups of finite groups”, Acta Appl. Math., 85:1 (2005), 305–311 | DOI | MR | Zbl

[6] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of finite groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[7] Asaad M., Shaalan A., “On the supersolubility of finite groups”, Arch. Math., 53:4 (1989), 318–326 | DOI | MR | Zbl

[8] Maier R., “A completeness property of certain formations”, Bull. London Math. Soc., 24 (1992), 540–544 | DOI | MR | Zbl

[9] Ballester-Bolinches A., Pérez-Ramos M. D., “A question of R. Maier concerning formations”, J. Algebra, 182 (1996), 738–747 | DOI | MR | Zbl

[10] Gaschütz W., “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR | Zbl

[11] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[12] Beidleman J. C., Heineken H., “Mutually permutable subgroups and group classes”, Arch. Math. (Basel), 85 (2005), 18–30 | DOI | MR | Zbl

[13] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978

[14] Monakhov V. S., “O konechnykh gruppakh s zadannym naborom podgrupp Shmidta”, Matem. zametki, 58:5 (1995), 717–722 | Zbl