Periodic solutions to nonlinear nonautonomous system of differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 86-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the existence of nonzero periodic solution to a system of differential eguations by the method of fixed point of nonlinear operator defined on a topological product of two compact sets.
Keywords: nonlinear ordinary differential equations dependent from small parameters, nonzero periodical solutions, principle of contracted mappings and Bohl–Brower theorem about fixed point.
@article{IVM_2017_5_a9,
     author = {M. T. Teryokhin and O. V. Baeva},
     title = {Periodic solutions to nonlinear nonautonomous system of differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--96},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a9/}
}
TY  - JOUR
AU  - M. T. Teryokhin
AU  - O. V. Baeva
TI  - Periodic solutions to nonlinear nonautonomous system of differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 86
EP  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a9/
LA  - ru
ID  - IVM_2017_5_a9
ER  - 
%0 Journal Article
%A M. T. Teryokhin
%A O. V. Baeva
%T Periodic solutions to nonlinear nonautonomous system of differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 86-96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a9/
%G ru
%F IVM_2017_5_a9
M. T. Teryokhin; O. V. Baeva. Periodic solutions to nonlinear nonautonomous system of differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 86-96. http://geodesic.mathdoc.fr/item/IVM_2017_5_a9/

[1] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991 | MR

[2] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1955

[3] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[4] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[5] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966

[6] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[7] Terëkhin M. T., “Bifurkatsiya periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, Izv. vuzov. Matem., 1999, no. 10, 37–42 | MR | Zbl

[8] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967