Periodic solutions to nonlinear nonautonomous system of differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 86-96
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a theorem on the existence of nonzero periodic solution to a system of differential eguations by the method of fixed point of nonlinear operator defined on a topological product of two compact sets.
Keywords:
nonlinear ordinary differential equations dependent from small parameters, nonzero periodical solutions, principle of contracted mappings and Bohl–Brower theorem about fixed point.
@article{IVM_2017_5_a9,
author = {M. T. Teryokhin and O. V. Baeva},
title = {Periodic solutions to nonlinear nonautonomous system of differential equations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {86--96},
publisher = {mathdoc},
number = {5},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a9/}
}
TY - JOUR AU - M. T. Teryokhin AU - O. V. Baeva TI - Periodic solutions to nonlinear nonautonomous system of differential equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 86 EP - 96 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_5_a9/ LA - ru ID - IVM_2017_5_a9 ER -
M. T. Teryokhin; O. V. Baeva. Periodic solutions to nonlinear nonautonomous system of differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 86-96. http://geodesic.mathdoc.fr/item/IVM_2017_5_a9/