Residually finite $p$-groups of generalized free products of groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime number. Recall that a group $G$ is said to be a residually finite $p$-group if for every nonidentity element $a$ of $G$ there exists a homomorphism of the group $G$ onto some finite $p$-group such that the image of the element $a$ differs from unity. For the free product of two residually finite $p$-groups with amalgamated finite subgroups we obtain a necessary and sufficient condition to be a residually finite $p$-group. This result is a generalization of the similar Higman theorem proved for a free product of two finite $p$-groups with amalgamation.
Keywords: free product of groups with amalgamated subgroups, residually finite $p$-group.
@article{IVM_2017_5_a0,
     author = {D. N. Azarov},
     title = {Residually finite $p$-groups of generalized free products of groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Residually finite $p$-groups of generalized free products of groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/
LA  - ru
ID  - IVM_2017_5_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Residually finite $p$-groups of generalized free products of groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/
%G ru
%F IVM_2017_5_a0
D. N. Azarov. Residually finite $p$-groups of generalized free products of groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/

[1] Iwasawa K., “Einige Sätze uber freie gruppen”, Proc. Acad. Tokyo, 19 (1943), 272–274 | DOI | MR | Zbl

[2] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980

[3] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc. (3), 7:1 (1957), 29–62 | DOI | MR | Zbl

[4] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106:2 (1963), 193–209 | DOI | MR | Zbl

[5] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1:3 (1964), 301–305 | DOI | MR | Zbl

[6] Azarov D. N., “Approksimiruemost razreshimykh grupp konechnogo ranga nekotorymi klassami konechnykh grupp”, Izv. vuzov. Matem., 2014, no. 8, 18–29

[7] Azarov D. N., “Ob approksimiruemosti konechnymi $p$-gruppami svobodnogo proizvedeniya dvukh nilpotentnykh grupp s konechnymi ob'edinennymi podgruppami”, Vestn. Ivanovsk. gos. un-ta. Ser.: Biologiya. Khimiya. Fizika. Matem., 3 (2006), 102–106 | Zbl

[8] Moldavanskii D. I., “Approksimiruemost konechnymi $p$-gruppami $HNN$-rasshirenii”, Vestn. Ivanovsk. gos. un-ta. Ser.: Biologiya. Khimiya. Fizika. Matem., 3 (2000), 129–140

[9] Moldavanskii D. I., “Ob approksimiruemosti konechnymi $p$-gruppami $HNN$-rasshirenii nilpotentnykh grupp”, Vestn. Ivanovsk. gos. un-ta. Ser.: Biologiya. Khimiya. Fizika. Matem., 3 (2006), 128–132