Residually finite $p$-groups of generalized free products of groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime number. Recall that a group $G$ is said to be a residually finite $p$-group if for every nonidentity element $a$ of $G$ there exists a homomorphism of the group $G$ onto some finite $p$-group such that the image of the element $a$ differs from unity. For the free product of two residually finite $p$-groups with amalgamated finite subgroups we obtain a necessary and sufficient condition to be a residually finite $p$-group. This result is a generalization of the similar Higman theorem proved for a free product of two finite $p$-groups with amalgamation.
Keywords: free product of groups with amalgamated subgroups, residually finite $p$-group.
@article{IVM_2017_5_a0,
     author = {D. N. Azarov},
     title = {Residually finite $p$-groups of generalized free products of groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Residually finite $p$-groups of generalized free products of groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/
LA  - ru
ID  - IVM_2017_5_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Residually finite $p$-groups of generalized free products of groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/
%G ru
%F IVM_2017_5_a0
D. N. Azarov. Residually finite $p$-groups of generalized free products of groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2017_5_a0/