The problem with operators of fractional differentiation in boundary condition for mixed-type equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 43-49
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a question of unique solvability of a boundary-value problem with fractional derivatives for a mixed-type equation of the second order. The uniqueness theorem is proved by using restrictions on known functions. The existence of a solution to the problem is proved by reduction to the Fredholm equation of the second kind. Unconditional solvability of this equation follows from the uniqueness of a solution.
Keywords:
operator of fractional differentiation, Gauss hypergeometric function, Cauchy problem, Fredholm integral equation.
@article{IVM_2017_4_a5,
author = {O. A. Repin and S. K. Kumykova},
title = {The problem with operators of fractional differentiation in boundary condition for mixed-type equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {43--49},
publisher = {mathdoc},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/}
}
TY - JOUR AU - O. A. Repin AU - S. K. Kumykova TI - The problem with operators of fractional differentiation in boundary condition for mixed-type equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 43 EP - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/ LA - ru ID - IVM_2017_4_a5 ER -
%0 Journal Article %A O. A. Repin %A S. K. Kumykova %T The problem with operators of fractional differentiation in boundary condition for mixed-type equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 43-49 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/ %G ru %F IVM_2017_4_a5
O. A. Repin; S. K. Kumykova. The problem with operators of fractional differentiation in boundary condition for mixed-type equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 43-49. http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/