The problem with operators of fractional differentiation in boundary condition for mixed-type equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a question of unique solvability of a boundary-value problem with fractional derivatives for a mixed-type equation of the second order. The uniqueness theorem is proved by using restrictions on known functions. The existence of a solution to the problem is proved by reduction to the Fredholm equation of the second kind. Unconditional solvability of this equation follows from the uniqueness of a solution.
Keywords: operator of fractional differentiation, Gauss hypergeometric function, Cauchy problem, Fredholm integral equation.
@article{IVM_2017_4_a5,
     author = {O. A. Repin and S. K. Kumykova},
     title = {The problem with operators of fractional differentiation in boundary condition for mixed-type equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--49},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - The problem with operators of fractional differentiation in boundary condition for mixed-type equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 43
EP  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/
LA  - ru
ID  - IVM_2017_4_a5
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T The problem with operators of fractional differentiation in boundary condition for mixed-type equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 43-49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/
%G ru
%F IVM_2017_4_a5
O. A. Repin; S. K. Kumykova. The problem with operators of fractional differentiation in boundary condition for mixed-type equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 43-49. http://geodesic.mathdoc.fr/item/IVM_2017_4_a5/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[3] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[4] Repin O. A., Kumykova S. K., “Ob odnoi kraevoi zadache so smescheniem dlya uravneniya smeshannogo tipa v neogranichennoi oblasti”, Differents. uravneniya, 48:8 (2012), 1140–1149 | Zbl

[5] Repin O. A., Kumykova S. K., “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa v oblasti, ellipticheskaya chast kotoroi — polupolosa”, Differents. uravneniya, 50:6 (2014), 807–816 | DOI | Zbl

[6] Smirnov M. M., Uravneniya smeshannogo tipa, Vyssh. shk., M., 1985

[7] Ivashkina G. A., “O zadachakh tipa zadachi Bitsadze–Samarskogo dlya uravneniya $u_{xx}+ \mathrm{sgn}\, y |y|^{m} u_{yy}=0$ $(01)$”, Differents. uravneniya, 17:6 (1981), 1078–1089 | Zbl

[8] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1976