$N$-extended symplectic connections in almost contact metric spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 15-23

Voir la notice de l'article provenant de la source Math-Net.Ru

On a manifold with an almost contact metric structure we introduce the notions of interior connection, $N$-extended connection and $N$-connection. It is shown that the Tanaka–Webster and Schouten–van Kampen connections are a special cases of $N$-connection. We define new classes of $N$-connections is the Wagner connection and canonical metric $N$-connection. We also define $N$-extended symplectic connection. It is proved that the $N$-extended symplectic connection exists on any manifold with a contact metric structure.
Keywords: almost contact metric structure, interior symplectic connection, $N$-extended symplectic connection, Schouten curvature tensor, Wagner curvature tensor, connection Tanaka–Webster connection
Mots-clés : Schouten–van Kampen connection.
@article{IVM_2017_3_a1,
     author = {S. V. Galaev},
     title = {$N$-extended symplectic connections in almost contact metric spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--23},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - $N$-extended symplectic connections in almost contact metric spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 15
EP  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/
LA  - ru
ID  - IVM_2017_3_a1
ER  - 
%0 Journal Article
%A S. V. Galaev
%T $N$-extended symplectic connections in almost contact metric spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 15-23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/
%G ru
%F IVM_2017_3_a1
S. V. Galaev. $N$-extended symplectic connections in almost contact metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 15-23. http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/