$N$-extended symplectic connections in almost contact metric spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 15-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a manifold with an almost contact metric structure we introduce the notions of interior connection, $N$-extended connection and $N$-connection. It is shown that the Tanaka–Webster and Schouten–van Kampen connections are a special cases of $N$-connection. We define new classes of $N$-connections is the Wagner connection and canonical metric $N$-connection. We also define $N$-extended symplectic connection. It is proved that the $N$-extended symplectic connection exists on any manifold with a contact metric structure.
Keywords: almost contact metric structure, interior symplectic connection, $N$-extended symplectic connection, Schouten curvature tensor, Wagner curvature tensor, connection Tanaka–Webster connection
Mots-clés : Schouten–van Kampen connection.
@article{IVM_2017_3_a1,
     author = {S. V. Galaev},
     title = {$N$-extended symplectic connections in almost contact metric spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--23},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - $N$-extended symplectic connections in almost contact metric spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 15
EP  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/
LA  - ru
ID  - IVM_2017_3_a1
ER  - 
%0 Journal Article
%A S. V. Galaev
%T $N$-extended symplectic connections in almost contact metric spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 15-23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/
%G ru
%F IVM_2017_3_a1
S. V. Galaev. $N$-extended symplectic connections in almost contact metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 15-23. http://geodesic.mathdoc.fr/item/IVM_2017_3_a1/

[1] Galaev S. V., “Vnutrennyaya geometriya metricheskikh pochti kontaktnykh mnogoobrazii”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 12:1 (2012), 16–22 | MR | Zbl

[2] Galaev S. V., “Pochti kontaktnye kelerovy mnogoobraziya postoyannoi golomorfnoi sektsionnoi krivizny”, Izv. vuzov. Matem., 2014, no. 8, 42–52

[3] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v $n$-mernom prostranstve”, Tr. cemin. po vektorn. i tenzorn. analizu, 5, 1941, 173–255 | MR

[4] Bejancu A., “Kähler contact distributions”, J. Geom. Phys, 60:12 (2010), 1958–1967 | DOI | MR | Zbl

[5] Tanno S., “Variational problems on contact Riemannian manifolds”, Trans. Amer. Math. Soc., 314:1 (1989), 349–379 | DOI | MR | Zbl

[6] Janssens D., Vanhecke L., “Almost contact structures and curvature tensors”, Kodai Math. J., 4:1 (1981), 1–27 | DOI | MR | Zbl

[7] Vershik A., Faddeev L., “Differentsialnaya geometriya i lagranzheva mekhanika so svyazyami”, DAN SSSR, 202:3 (1972), 555–557 | Zbl

[8] Vershik A., Faddeev L., “Lagranzheva mekhanika v invariantnom izlozhenii”, Probl. teor. fiz., Izd-vo LGU, L., 1975, 129–141

[9] Manin Yu. I., Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | MR

[10] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy-7, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Fundament. napravleniya, 16, VINITI, M., 1987, 5–85

[11] Galaev S. V., Gokhman A. V., “Pochti simplekticheskie svyaznosti na negolonomnom mnogoobrazii”, Sb. nauchn. tr., Matem. Mekhan., 3, Izd-vo Saratovsk. un-ta, Saratov, 2001, 28–31

[12] Vezzoni L., “Connections on contact manifolds and contact twistor space”, Israel J. Math., 178 (2010), 253–267 | DOI | MR | Zbl

[13] Trofimov V. V., “O svyaznostyakh absolyutnogo parallelizma na simplekticheskom mnogoobrazii”, UMN, 48:1 (1993), 191–192 | MR | Zbl

[14] Trofimov V. V., “Indeks Maslova lagranzhevykh podmnogoobrazii simplekticheskikh mnogoobrazii”, Tr. cemin. po vektorn. i tenzorn. analizu, 23, 1988, 190–194 | Zbl