Method of integral transformations in inverse problems of anomalous diffusion
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial boundary-value problem for a multidimentional fractional diffusion equation. The aim of the paper is the construction of integrated transformation with a kernel of type of Right which is the unique correspondence connecting the fractional equation of diffusion and the hyperbolic equation. This transformation can be used for the proof of uniqueness of the solution of an inverse problem for the fractional equation of diffusion.
Keywords: fractional equation, initial boundary-value problem, inverse problem.
Mots-clés : anomalous diffusion
@article{IVM_2017_3_a0,
     author = {A. N. Bondarenko and T. V. Bugueva and D. S. Ivashchenko},
     title = {Method of integral transformations in inverse problems of anomalous diffusion},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a0/}
}
TY  - JOUR
AU  - A. N. Bondarenko
AU  - T. V. Bugueva
AU  - D. S. Ivashchenko
TI  - Method of integral transformations in inverse problems of anomalous diffusion
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a0/
LA  - ru
ID  - IVM_2017_3_a0
ER  - 
%0 Journal Article
%A A. N. Bondarenko
%A T. V. Bugueva
%A D. S. Ivashchenko
%T Method of integral transformations in inverse problems of anomalous diffusion
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a0/
%G ru
%F IVM_2017_3_a0
A. N. Bondarenko; T. V. Bugueva; D. S. Ivashchenko. Method of integral transformations in inverse problems of anomalous diffusion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2017_3_a0/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[2] Podlubny I., Fractional differential equations, Academic Press, San Diego, CA, 1999 | MR | Zbl

[3] Nigmatullin R. R., “Drobnyi integral i ego fizicheskaya interpretatsiya”, TMF, 90:3 (1992), 354–368 | Zbl

[4] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl

[5] Montroll E. W., Weiss G. H., “Random walks on lattices. II”, J. Math. Phys., 6:2 (1965), 167–178 | DOI | MR

[6] Barkai E., Metzler R., Klafter M., “From continuous time random walks to the fractional Fokker–Plank equation”, Phys. Rev. E, 61:1 (2000), 132–138 | DOI | MR

[7] Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P., “Discrete random walk models for space-time fractional diffusion”, Chem. Phys., 284:1 (2002), 521–541 | DOI | MR

[8] Gorenflo R., Vivoli A., Mainardi F., “Discrete and continuous random walk models for space-time fractional diffusion”, Nonlinear Dynam., 38:1–4 (2004), 101–116 | DOI | MR | Zbl

[9] Bondarenko A. N., Ivaschenko D. S., “Generalized Sommerfeld problem for time fractional diffusion equation: analytical and numerical approach”, J. Inv. Ill-Posed Problems, 17:4 (2009), 321–335 | DOI | MR | Zbl

[10] Bondarenko A. N., Ivaschenko D. S., “Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient”, J. Inv. Ill-Posed Problems, 17:5 (2009), 419–440 | DOI | MR | Zbl

[11] Cheng J., Nakagawa J., Yamamoto M., Yamazaki T., “Uniqueness in an inverse problem for one-dimensional fractional diffusion equation”, Inverse Problems, 25:11 (2009), 115002, 16 pp. | DOI | MR | Zbl

[12] Vladimirov V. S., Equations of mathematical physics, Marcel Dekker, Inc., New York, 1971 | MR | Zbl

[13] Bragg L. R., Dettman J. W., “An operator calculus for related partial differential equations”, J. Math. Anal. Appl., 22:1 (1968), 261–271 | DOI | MR | Zbl

[14] Bragg L. R., Dettman J. W., “A class of related Dirichlet and unitial value problems”, Proc. Amer. Math. Soc., 21:1 (1969), 50–56 | DOI | MR | Zbl

[15] Bragg L. R., Dettman J. W., “Related problems in partial differential equations”, Bull. Amer. Math. Soc., 74:2 (1968), 575–378 | DOI | MR

[16] Lavrent'ev M. M., Reznitskaya K. G., Yakhno V. G., One-dimensional inverse problems of mathematical physics, AMS Translations, Series 2, 130, 1986 | DOI | MR | Zbl

[17] Wyss M. M., Wyss W., Evolution, its fractional extension and generalization, arXiv: math-ph/9912023 | MR

[18] Gorenflo R., Iskenderov A., Luchko Y., Mapping between solutions of fractional diffusion-wave equations, http://public.beuth-hochschule.de/\allowbreakl̃uchko/papers/fcaa3.PDF

[19] Romanov V. G., Inverse problems of mathematical physics, VNU Science Press, Utrecht, The Netherlands, 1987 | MR