Local discrepancies in the problem linear function fractional parts distribution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 88-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a problem of distribution of the fractional parts of the sequence obtained as multiplies of some irrational number with bounded partial quotients of its continued fraction expansion. Local discrepancies are the remainder terms of asymptotic formulas for the number of points of the sequence lying in given intervals. Earlier only intervals with bounded and logariphmic local discrepancies were known. We prove that there exists an infinite set of intervals with arbitrary small growth of local discrepancies. The proof is based on the connection of considered prolem with some problems from diophantine approximations.
Keywords: uniform distribution, local discrepancy, continued fractions, bounded partial quotients, inhomogeneous diophantine approximation.
@article{IVM_2017_2_a8,
     author = {A. V. Shutov},
     title = {Local discrepancies in the problem linear function fractional parts distribution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {88--97},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a8/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Local discrepancies in the problem linear function fractional parts distribution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 88
EP  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_2_a8/
LA  - ru
ID  - IVM_2017_2_a8
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Local discrepancies in the problem linear function fractional parts distribution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 88-97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_2_a8/
%G ru
%F IVM_2017_2_a8
A. V. Shutov. Local discrepancies in the problem linear function fractional parts distribution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 88-97. http://geodesic.mathdoc.fr/item/IVM_2017_2_a8/

[1] Bohl P., “Über ein in der Theorie der säkutaren Störungen vorkommendes Problem”, J. Reine Angew. Math., 135 (1909), 189–283 | MR | Zbl

[2] Sierpinski W., “Sur la valeur asymptotique d'une certaine somme”, Krakau Anz. (A), 1910, 9–11 | Zbl

[3] Weyl H., “Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene”, Rendiconti del Circolo Mathematico di Palermo, 30 (1910), 377–407 | DOI | Zbl

[4] Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl

[5] Drmota M., Tichy R. F., Sequences, discrepancies and applications, Springer, Berlin, 1997 | MR | Zbl

[6] Pinner C. G., “On sums of fractional parts $\{n\alpha+\gamma\}$”, J. Number Theory, 65:1 (1997), 48–73 | DOI | MR | Zbl

[7] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Mir, M., 1985

[8] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod. eins”, Math. Sem. Hamburg Univ., 5 (1921), 54–76

[9] Shutov A. V., “Optimalnye otsenki v probleme raspredeleniya drobnykh dolei na mnozhestvakh ogranichennogo ostatka”, Vestn. Samarsk. gos. un-ta. Estestvennonauchnaya ser., 2007, no. 7(57), 168–175

[10] Krasilschikov V. V., Shutov A. V., “Opisanie i tochnye znacheniya maksimuma i minimuma ostatochnogo chlena problemy raspredeleniya drobnykh dolei”, Matem. zametki, 89:1 (2011), 43–52 | DOI | MR | Zbl

[11] Kesten H., “On a conjecture of Erdös and Szüsz related to uniform distribution $\mod 1$”, Acta Arithmetica, 12 (1966), 193–212 | MR | Zbl

[12] Sos V. T., “On strong irregularities of the distribution of $\{n\alpha\}$ sequences”, Studies in pure math., Birkhauser, Basel, 1983, 685–700 | DOI | MR

[13] Adamczewski B., “Repartition des suites $(n\alpha)_{n\in\mathbb{N}}$ et substitutions”, Acta Arithmetica, 112 (2004), 1–22 | DOI | MR | Zbl

[14] Roçadas L., Schoißengeier J., “On the local discrepancy of $(n\alpha)$-sequences”, J. Number Theory, 131:8 (2011), 1492–1497 | DOI | MR

[15] Beck J., “Randomness of the square root of $2$ and the giant leap, 1”, Periodica Math. Hungarica, 60:2 (2010), 137–242 | DOI | MR | Zbl

[16] Beck J., “Randomness of the square root of $2$ and the giant leap, 2”, Periodica Math. Hungarica, 62:2 (2011), 127–246 | DOI | MR | Zbl

[17] Shutov A. V., “Neodnorodnye diofantovy priblizheniya i raspredelenie drobnykh dolei”, Fundament. i prikl. matem., 16:6 (2010), 189–202

[18] Hensley D., Continued fractions, World Scientific, 2006 | MR | Zbl

[19] Olds C. D., Continued fractions, Math. Association of America, Yale, 1963 | MR

[20] Shutov A. V., “O minimalnykh sistemakh schisleniya”, Issled. po algebre, teorii chisel, funkts. analizu i smezhnym vopr., 4, Saratov, 2007, 125–138

[21] Shalit J., “Real numbers with bounded partial quotients: a survey”, L'Enseignement Math., 38 (1992), 151–187 | MR