Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_2_a3, author = {Ya. Yu. Larina and L. I. Rodina}, title = {Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {34--43}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/} }
TY - JOUR AU - Ya. Yu. Larina AU - L. I. Rodina TI - Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 34 EP - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/ LA - ru ID - IVM_2017_2_a3 ER -
%0 Journal Article %A Ya. Yu. Larina %A L. I. Rodina %T Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 34-43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/ %G ru %F IVM_2017_2_a3
Ya. Yu. Larina; L. I. Rodina. Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 34-43. http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/
[1] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288
[2] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2011, no. 1, 67–86 | MR | Zbl
[3] Rodina L. I., “Prostranstvo $\mathrm{clcv}(\mathbb{R}^n)$ s metrikoi Khausdorfa–Bebutova i statisticheski invariantnye mnozhestva upravlyaemykh sistem”, Tr. Matem. in-ta im. V. A. Steklova, 278, 2012, 217–226 | MR | Zbl
[4] Rodina L. I., “Otsenka statisticheskikh kharakteristik mnozhestva dostizhimosti upravlyaemykh sistem”, Izv. vuzov. Matem., 2013, no. 11, 20–32 | MR | Zbl
[5] Larina Ya. Yu., Rodina L. I., “Statisticheskie kharakteristiki upravlyaemykh sistem, voznikayuschie v razlichnykh modelyakh estestvoznaniya”, Modelir. i analiz informatsionnykh sistem, 20:5 (2013), 62–77
[6] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985
[7] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999
[8] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980
[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[10] Kozlov V. V., “Usrednenie v okrestnosti ustoichivykh invariantnykh torov”, Regulyarnaya i khaoticheskaya dinamika, 2:3/4 (1997), 41–46 | MR
[11] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967
[12] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Moskovsk. un-ta, M., 1978
[13] Kuzenkov O. A., Ryabova E. A., Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhegorodsk. un-ta, Nizhnii Novgorod, 2007
[14] Nedorezov L. V., Kurs lektsii po matematicheskoi ekologii, Sibirskii khronograf, Novosibirsk, 1997
[15] Davydov A. A., Danchenko V. I., Zvyagin M. Yu., “Suschestvovanie i edinstvennost statsionarnogo raspredeleniya biologicheskogo soobschestva”, Tr. Matem. in-ta im. V.A. Steklova, 267, 2009, 46–55 | MR | Zbl
[16] Prasolov A. V., Matematicheskie metody ekonomicheskoi dinamiki, Lan, SPb., 2008
[17] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002
[18] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Mir, M., 1979