Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the investigation of expansion of a concept of invariance for sets which consists in studying of statistically invariant sets with respect to control systems and differential inclusions is continued. We consider the statistical characteristics of continuous functions: upper and lower relative frequency of containing for graph of a function in a given set. We obtain conditions under which statistical characteristics of two various asymptotical equivalent functions coincide, then by the value of one of them it is possible to calculate the value of another one. We adduce the equality for finding of relative frequencies of hitting of functions the given set in the case when the distance from the graph of one of functions to the given set is a periodic function. A consequence of these statements are conditions of statistically weak invariance of a set with respect to controlled system. For some almost periodic functions we obtain the formulas by which we can calculate the mean values and the statistical characteristics. We also consider the following problem. Let the number $ \lambda_0\in [0,1]$ be given. It is necessary to find the value $c(\lambda_0)$ such that the upper solution $z(t)$ of the Cauchy problem does not exceed $c(\lambda_0)$ with the relative frequency being equal $\lambda_0$. Depending on statement of the problem, a value $z (t) $ can be interpreted as the size of population, energy of a particle, concentration of substance, size of manufacture or the price of production.
Keywords: controllable system, dynamical system, almost periodic function, statistical characteristic, statistical weakly invariant set.
@article{IVM_2017_2_a3,
     author = {Ya. Yu. Larina and L. I. Rodina},
     title = {Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--43},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/}
}
TY  - JOUR
AU  - Ya. Yu. Larina
AU  - L. I. Rodina
TI  - Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 34
EP  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/
LA  - ru
ID  - IVM_2017_2_a3
ER  - 
%0 Journal Article
%A Ya. Yu. Larina
%A L. I. Rodina
%T Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 34-43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/
%G ru
%F IVM_2017_2_a3
Ya. Yu. Larina; L. I. Rodina. Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 34-43. http://geodesic.mathdoc.fr/item/IVM_2017_2_a3/

[1] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[2] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2011, no. 1, 67–86 | MR | Zbl

[3] Rodina L. I., “Prostranstvo $\mathrm{clcv}(\mathbb{R}^n)$ s metrikoi Khausdorfa–Bebutova i statisticheski invariantnye mnozhestva upravlyaemykh sistem”, Tr. Matem. in-ta im. V. A. Steklova, 278, 2012, 217–226 | MR | Zbl

[4] Rodina L. I., “Otsenka statisticheskikh kharakteristik mnozhestva dostizhimosti upravlyaemykh sistem”, Izv. vuzov. Matem., 2013, no. 11, 20–32 | MR | Zbl

[5] Larina Ya. Yu., Rodina L. I., “Statisticheskie kharakteristiki upravlyaemykh sistem, voznikayuschie v razlichnykh modelyakh estestvoznaniya”, Modelir. i analiz informatsionnykh sistem, 20:5 (2013), 62–77

[6] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985

[7] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999

[8] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980

[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[10] Kozlov V. V., “Usrednenie v okrestnosti ustoichivykh invariantnykh torov”, Regulyarnaya i khaoticheskaya dinamika, 2:3/4 (1997), 41–46 | MR

[11] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[12] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Moskovsk. un-ta, M., 1978

[13] Kuzenkov O. A., Ryabova E. A., Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhegorodsk. un-ta, Nizhnii Novgorod, 2007

[14] Nedorezov L. V., Kurs lektsii po matematicheskoi ekologii, Sibirskii khronograf, Novosibirsk, 1997

[15] Davydov A. A., Danchenko V. I., Zvyagin M. Yu., “Suschestvovanie i edinstvennost statsionarnogo raspredeleniya biologicheskogo soobschestva”, Tr. Matem. in-ta im. V.A. Steklova, 267, 2009, 46–55 | MR | Zbl

[16] Prasolov A. V., Matematicheskie metody ekonomicheskoi dinamiki, Lan, SPb., 2008

[17] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[18] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Mir, M., 1979