A maximum of the first eigenvalue of semibounded differential operator with a parameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a self-adjoint differential operator in Hilbert space. Then the domain of the operator is changed by the perturbation of the boundary conditions so that a given neighborhood “is cleared” from the points of the spectrum of the perturbed operator. For the Sturm–Liouville operator on the segment and the Laplace operator on the square such a possibility is attained cia integral perturbations of boundary conditions.
Keywords: Laplace operator, eigenfunction, eigenvalue.
@article{IVM_2017_2_a1,
     author = {B. E. Kanguzhin and D. Dauitbek},
     title = {A maximum of the first eigenvalue of semibounded differential operator with a parameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--21},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a1/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
AU  - D. Dauitbek
TI  - A maximum of the first eigenvalue of semibounded differential operator with a parameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 14
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_2_a1/
LA  - ru
ID  - IVM_2017_2_a1
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%A D. Dauitbek
%T A maximum of the first eigenvalue of semibounded differential operator with a parameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 14-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_2_a1/
%G ru
%F IVM_2017_2_a1
B. E. Kanguzhin; D. Dauitbek. A maximum of the first eigenvalue of semibounded differential operator with a parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 14-21. http://geodesic.mathdoc.fr/item/IVM_2017_2_a1/

[1] Butkovskii A. G., Samoilenko Yu. I., “Upravlenie kvantovymi ob'ektami, I”, Avtomatika i telemekhanika, 1979, no. 4, 5–25

[2] Butkovskii A. G., Samoilenko Yu. I., “Upravlenie kvantovymi ob'ektami, II”, Avtomatika i telemekhanika, 1979, no. 5, 5–23 | MR

[3] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976

[4] Kanguzhin B. E., Berikkhanova G. E., Zhumagulov B. T., “Matematicheskaya model kolebanii paketa pryamougolnykh plastin s uchetom tochechnykh svyazei”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 1:9 (2010), 72–86

[5] Islamov G. G., “Ekstremalnye vozmuscheniya zamknutykh operatorov”, Izv. vuzov. Matem., 1989, no. 1, 35–41 | MR

[6] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[7] Kanguzhin B. E., Aniyarov A. A., “Korrektnye zadachi dlya operatora Laplasa v prokolotom kruge”, Matem. zametki, 89:6 (2011), 856–867 | DOI | MR | Zbl

[8] Kanguzhin B. E., Nurakhmetov D. B., Tokmagambetov N. E., “Operator Laplasa s $\sigma$-podobnymi potentsialami”, Izv. vuzov. Matem., 2014, no. 2, 9–16 | MR

[9] Kanguzhin B. E., Nurakhmetov D. B., Tokmagambetov N. E., “O formule regulyarnogo sleda korrektno vozmuschennogo operatora Laplasa”, Dokl. RAN, 460:1 (2015), 7–10 | DOI | Zbl

[10] Danford N., Shvarts Dzh.T., Lineinye operatory, v. 3, Spektralnye operatory, Mir, M., 1974