A maximum of the first eigenvalue of semibounded differential operator with a parameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 14-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a self-adjoint differential operator in Hilbert space. Then the domain of the operator is changed by the perturbation of the boundary conditions so that a given neighborhood “is cleared” from the points of the spectrum of the perturbed operator. For the Sturm–Liouville operator on the segment and the Laplace operator on the square such a possibility is attained cia integral perturbations of boundary conditions.
Keywords:
Laplace operator, eigenfunction, eigenvalue.
@article{IVM_2017_2_a1,
author = {B. E. Kanguzhin and D. Dauitbek},
title = {A maximum of the first eigenvalue of semibounded differential operator with a parameter},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {14--21},
publisher = {mathdoc},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a1/}
}
TY - JOUR AU - B. E. Kanguzhin AU - D. Dauitbek TI - A maximum of the first eigenvalue of semibounded differential operator with a parameter JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 14 EP - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_2_a1/ LA - ru ID - IVM_2017_2_a1 ER -
B. E. Kanguzhin; D. Dauitbek. A maximum of the first eigenvalue of semibounded differential operator with a parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 14-21. http://geodesic.mathdoc.fr/item/IVM_2017_2_a1/