Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_1_a4, author = {R. V. Namm and G. I. Tsoi}, title = {The method of successive approximations for solving quasi-variational {Signorini} inequality}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {44--52}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a4/} }
TY - JOUR AU - R. V. Namm AU - G. I. Tsoi TI - The method of successive approximations for solving quasi-variational Signorini inequality JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 44 EP - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_1_a4/ LA - ru ID - IVM_2017_1_a4 ER -
R. V. Namm; G. I. Tsoi. The method of successive approximations for solving quasi-variational Signorini inequality. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 44-52. http://geodesic.mathdoc.fr/item/IVM_2017_1_a4/
[1] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986
[2] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR
[3] Haslinger J., Hlavacek I., Necas J., “Numerical methods for unilateral problems in solid mechanics”, Handbook of Numerical Analysis, v. IV, eds. P. G. Ciarlet, J. L. Lions, North Holland, 1996, 313–486 | MR
[4] Vikhtenko E. M., Namm R. V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zhurn. vychisl. matem. i matem. fiz., 47:12 (2007), 2023–2036 | MR
[5] Vikhtenko E. M., Namm R. V., “Iterativnaya proksimalnaya regulyarizatsiya modifitsirovannogo funktsionala Lagranzha dlya resheniya polukoertsitivnogo kvazivariatsionnogo neravenstva Sinorini”, Zhurn. vychisl. matem. i matem. fiz., 48:9 (2008), 1–9 | MR
[6] Kravchuk A. S., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M., 1997
[7] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs RAN, M., 2002
[8] Antipin A. S., Golikov A. I., Khoroshilova E. V., “Funktsiya chuvstvitelnosti, ee svoistva i prilozheniya”, Zhurn. vychisl. matem. i matem. fiz., 51:12 (2011), 1–17 | MR
[9] Glovinski R., Lions Zh. L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979
[10] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl
[11] Vu G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zhurn. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36 | MR | Zbl
[12] Vu G., Kim S., Namm R. V., Sachkov S. A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zhurn. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031 | MR
[13] Vikhtenko E. M., Vu G., Namm R. V., “Metody resheniya polukoertsitivnykh variatsionnykh neravenstv mekhaniki na osnove modifitsirovannykh funktsionalov Lagranzha”, Dalnevostochn. matem. zhurn., 14:1 (2014), 6–17 | MR | Zbl
[14] Vikhtenko E. M., Vu G., Namm R. V., “Funktsionaly chuvstvitelnosti v kontaktnykh zadachakh teorii uprugosti”, Zhurn. vychisl. matem. i matem. fiz., 54:7 (2014), 1218–1228 | DOI | MR | Zbl
[15] Konnov I., Gwinner J., “A strongly convergent combined relaxation method in Hilbert spaces”, Numerical Funct. Anal. Optim., 35:7–9 (2014), 1066–1077 | DOI | MR | Zbl
[16] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Fizmatlit, M., 1981
[17] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986
[18] Namm R. V., Sachkov S. A., “Reshenie kvazivariatsionnogo neravenstva Sinorini metodom posledovatelnykh priblizhenii”, Zhurn. vychisl. matem. i matem. fiz., 49:5 (2009), 805–814 | MR | Zbl