Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a boundary-value problem for mixed-type equation with the Lavrent'ev–Bitsadze operator in the main part and $q$-difference deviations of an argument in the lowest terms. We construct a general solution to the equation and prove a uniqueness theorem without limitations on the deviation value. The problem is solvable. We find integral representations of solutions in the elliptic and hyperbolic domains.
Keywords: mixed-type equation, integral equation, $q$-difference equation, successive approximations method.
@article{IVM_2017_1_a0,
     author = {A. N. Zarubin},
     title = {Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a0/}
}
TY  - JOUR
AU  - A. N. Zarubin
TI  - Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_1_a0/
LA  - ru
ID  - IVM_2017_1_a0
ER  - 
%0 Journal Article
%A A. N. Zarubin
%T Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_1_a0/
%G ru
%F IVM_2017_1_a0
A. N. Zarubin. Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2017_1_a0/

[1] Trikomi F., O lineinykh uravneniyakh v chastnykh proizvodnykh vtorogo poryadka smeshannogo tipa, Gostekhizdat, M.–L., 1947

[2] Zarubin A. N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Izd-vo Orlovsk. gos. un-ta, Orel, 1999

[3] Aleshin P. S., Zarubin A. N., “Nachalno-kraevaya zadacha dlya differentsialno-raznostnogo uravneniya diffuzii s drobnoi proizvodnoi i raspredelennym zapazdyvaniem”, Differents. uravneniya, 43:10 (2007), 1363–1368 | MR | Zbl

[4] Zarubin A. N., “Zadacha Gellerstedta dlya differentsialno-raznostnogo uravneniya smeshannogo tipa s operezhayusche-zapazdyvayuschimi kratnymi otkloneniyami argumenta”, Differents. uravneniya, 49:10 (2013), 1308–1315 | Zbl

[5] Zarubin A. N., “Kraevaya zadacha dlya operezhayusche-zapazdyvayuschego uravneniya smeshannogo tipa s negladkoi liniei vyrozhdeniya”, Differents. uravneniya, 50:10 (2014), 1362–1372 | DOI | Zbl

[6] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, OGIZ, M.–L., 1948

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983

[8] Vekua I. N., “Obraschenie odnogo integralnogo preobrazovaniya i ego nekotorye prilozheniya”, Soobsch. AN GruzSSR, 6:3 (1945), 177–183 | MR | Zbl

[9] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973

[10] Ter-Krikorov A. M., Shabunin M. I., Kurs matematicheskogo analiza, Nauka, M., 1988

[11] Zarubin A. N., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s operezhayusche-zapazdyvayuschim argumentom”, Differents. uravneniya, 48:10 (2012), 1404–1411 | Zbl

[12] Agranovich M. S., Obobschennye funktsii, MTsNMO, M., 2008

[13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981