Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate a boundary-value problem for mixed-type equation with the Lavrent'ev–Bitsadze operator in the main part and $q$-difference deviations of an argument in the lowest terms. We construct a general solution to the equation and prove a uniqueness theorem without limitations on the deviation value. The problem is solvable. We find integral representations of solutions in the elliptic and hyperbolic domains.
Keywords:
mixed-type equation, integral equation, $q$-difference equation, successive approximations method.
@article{IVM_2017_1_a0,
author = {A. N. Zarubin},
title = {Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--11},
publisher = {mathdoc},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a0/}
}
TY - JOUR AU - A. N. Zarubin TI - Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 3 EP - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_1_a0/ LA - ru ID - IVM_2017_1_a0 ER -
A. N. Zarubin. Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2017_1_a0/