Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_12_a3, author = {P. K. Pandey}, title = {A finite difference method for the numerical solving general third-order boundary-value problem with an internal boundary condition}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {35--45}, publisher = {mathdoc}, number = {12}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_12_a3/} }
TY - JOUR AU - P. K. Pandey TI - A finite difference method for the numerical solving general third-order boundary-value problem with an internal boundary condition JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 35 EP - 45 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_12_a3/ LA - ru ID - IVM_2017_12_a3 ER -
%0 Journal Article %A P. K. Pandey %T A finite difference method for the numerical solving general third-order boundary-value problem with an internal boundary condition %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 35-45 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_12_a3/ %G ru %F IVM_2017_12_a3
P. K. Pandey. A finite difference method for the numerical solving general third-order boundary-value problem with an internal boundary condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2017), pp. 35-45. http://geodesic.mathdoc.fr/item/IVM_2017_12_a3/
[1] Gregus M., Third order linear differential equations, Math. and Appl. (East European Series), D. Reidel Publ. Company, Dordrecht–Boston–Lancaster–Tokyo, 1987 | MR | Zbl
[2] Jackson L. K., “Existence and uniqueness of solutions of boundary-value problems for third order differential equations”, J. Diff. Eqs., 13 (1973), 432–437 | DOI | MR | Zbl
[3] Gupta C. P., Lakshmikantham V., “Existence and uniqueness theorems for a third-order three point boundary-value problem”, Nonlinear Analysis: Theory, Methods Appl., 16:11 (1991), 949–957 | DOI | MR | Zbl
[4] Murty K. N., Rao Y. S., “A theory for existence and uniqueness of solutions to three-point boundary-value problems”, J. Math. Anal. and Appl., 167:1 (1992), 43–48 | DOI | MR | Zbl
[5] Henderson J., Prasad K. R., “Existence and uniqueness of solutions of three-point boundary-value problems on time scales”, Nonlin. Studies, 8 (2001), 1–12 | MR | Zbl
[6] Gregus M., Abdel Karim R. I. I., “Boundedness of the solutions of the differential equation $(py')'' + (py')' + ry = 0 $”, Proc. Math. and Phys. Soc., U.A.R., 32 (1968), 107–110 | MR | Zbl
[7] Agarwal R. P., Boundary-value problems for higher order differential equations, World Scientific, Singapore, 1986 | MR | Zbl
[8] Na T. Y., Computational methods in engineering boundary-value problems, Academic Press, New York, 1979 | MR | Zbl
[9] Al-Said E. A., “Numerical solutions for system of third-order boundary-value problems”, International J. Computer Math., 78:1 (2001), 111–121 | DOI | MR | Zbl
[10] Khan A., Aziz T., “The numerical solution of third-order boundary-value problems using quintic splines”, Appl. Math. and Comput., 137:2–3 (2003), 253–260 | MR | Zbl
[11] Islam S., Khan M. A., Tirmizi I. A., Twizell E. H., “Non-polynomial splines approach to the solution of a system of third-order boundary-value problems”, Appl. Math. and Comput., 168:1 (2005), 152–163 | MR | Zbl
[12] Li X., Wu B., “Reproducing kernel method for singular multi-point boundary-value problems”, Math. Sci., 6 (2012), 16 | DOI | MR
[13] Pandey P. K., “The numerical solution of third order differential equation containing the first derivative”, Neural Parallel Scientific Comp., 13 (2005), 297–304 | MR | Zbl
[14] Varga R. S., Matrichnyi iteratsionnyi analiz, Springer-Verlag, Heidelberg, 2002
[15] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, New York, NY1, USA, 1001 | MR
[16] Jator S. N., “On the numerical integration of third order boundary-value problems by a linear multistep method”, International J. Pure and Appl. Math., 46:3 (2008), 375–388 | MR | Zbl
[17] Krajcinovic D., “Sandwich beam analysis”, J. Appl. Mech., 1971, 773–778
[18] Ghazala A., Muhammad T., Shahid S. S., Hamood U. R., “Solution of a linear third order multi-point boundary value problem using RKM”, British J. Math. Comp. Sci., 3:2 (2013), 180–194 | DOI