On zeros of functions rapidly growing in generalized Bergman spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The zero-sets of rapidly growing functions which belong to the Bergman spaces and more general spaces of analytic functions with mixed norms have no clear-cut description. A range of exact necessary conditions on the moduli of zeros of such functions presented in the paper show the impossibility to obtain such a description in more or less clear geometrical terms.
Keywords: Bergman spaces, zeros of analytic functions.
@article{IVM_2017_11_a5,
     author = {E. A. Sevast'yanov},
     title = {On zeros of functions rapidly growing in generalized {Bergman} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--59},
     publisher = {mathdoc},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a5/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - On zeros of functions rapidly growing in generalized Bergman spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 46
EP  - 59
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_11_a5/
LA  - ru
ID  - IVM_2017_11_a5
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T On zeros of functions rapidly growing in generalized Bergman spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 46-59
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_11_a5/
%G ru
%F IVM_2017_11_a5
E. A. Sevast'yanov. On zeros of functions rapidly growing in generalized Bergman spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 46-59. http://geodesic.mathdoc.fr/item/IVM_2017_11_a5/

[1] Stevich S., Li S., “Differentsirovanie superpozitsii kak operator iz prostranstv so smeshannoi normoi v $\alpha$-prostranstvakh Blokha”, Matem. sb., 199:12 (2008), 117–128 | DOI | MR

[2] Horowitz C., “Zeros of functions in the Bergman spaces”, Duke Math. J., 41:4 (1974), 693–710 | DOI | MR | Zbl

[3] Dzhrbashyan M. M., “K probleme predstavimosti analiticheskikh funktsii”, Soobscheniya in-ta matem. i mekh. AN Arm. SSR, 1948, no. 2, 3–40

[4] Korenblum B., “An extension of the Nevanlinna theory”, Acta Math., 135:3–4 (1975), 187–219 | DOI | MR | Zbl

[5] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[6] Seip K., “On Korenblum`s density condition for the zero sequences of $A^{-\alpha}$”, J. Anal. Math., 67:1 (1995), 307–322 | DOI | MR | Zbl

[7] Luecking Daniel H., “Zero sequences for Bergman spaces”, Complex Variables Theory Appl., 30:4 (1996), 345–362 | DOI | MR | Zbl

[8] Blasco O., Kukuryka A., Nowak M., “Luecking's condition for zeros of analytic functions”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 58 (2004), 1–15 | MR | Zbl

[9] Seip K., “An extension of the Blaschke condition”, J. London Math. Soc. (2), 51:3 (1995), 545–558 | DOI | MR | Zbl

[10] Bruna J., Massaneda X., “Zero sets of holomorphic functions in the unit ball with slow growth”, J. Anal. Math., 66:1 (1995), 217–252 | DOI | MR | Zbl

[11] Kudasheva E. G., Khabibullin B. N., “Raspredelenie nulei golomorfnykh funktsii umerennogo rosta v edinichnom kruge i predstavlenie v nem meromorfnykh funktsii”, Matem. sb., 200:9 (2009), 95–126 | DOI | Zbl

[12] Dolgoborodov A. A., Sevastyanov E. A., “Ekstremalnye svoistva podposledovatelnostei nulei analiticheskikh funktsii iz prostranstv so smeshannoi normoi”, Matem. sb., 202:8 (2011), 3–20 | DOI | MR | Zbl

[13] Sevastyanov E. A., Dolgoborodov A. A., “Nuli funktsii v vesovykh prostranstvakh so smeshannoi normoi”, Matem. zametki, 94:2 (2013), 279–294 | DOI | Zbl

[14] Biryukov L. N., “Raspredelenie nulei funktsii iz klassov $A_{p,-1,l}$”, Vestn. Moskovsk. un-ta. Matem. Mekhan., 2005, no. 5, 13–20 | MR

[15] Sevastyanov E. A., Dolgoborodov A. A., “O raspredelenii nulei funktsii iz prostranstv Bergmana s vesom”, Matem. zametki, 86:1 (2009), 95–109 | DOI | MR