Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_11_a3, author = {Sh. T. Ishmukhametov and B. G. Mubarakov and Kamal Maad Al-Anni}, title = {Calculation of {Bezout's} coefficients for $k$-ary algorithm of greatest common divisor}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {30--38}, publisher = {mathdoc}, number = {11}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_11_a3/} }
TY - JOUR AU - Sh. T. Ishmukhametov AU - B. G. Mubarakov AU - Kamal Maad Al-Anni TI - Calculation of Bezout's coefficients for $k$-ary algorithm of greatest common divisor JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 30 EP - 38 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_11_a3/ LA - ru ID - IVM_2017_11_a3 ER -
%0 Journal Article %A Sh. T. Ishmukhametov %A B. G. Mubarakov %A Kamal Maad Al-Anni %T Calculation of Bezout's coefficients for $k$-ary algorithm of greatest common divisor %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 30-38 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_11_a3/ %G ru %F IVM_2017_11_a3
Sh. T. Ishmukhametov; B. G. Mubarakov; Kamal Maad Al-Anni. Calculation of Bezout's coefficients for $k$-ary algorithm of greatest common divisor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2017), pp. 30-38. http://geodesic.mathdoc.fr/item/IVM_2017_11_a3/
[1] Krendell R., Pomerans K., Prostye chisla: kriptograficheskie i vychislitelnye aspekty, URRS, M., 2011
[2] Sorenson J., The $k$-ary GCD algorithm, Techn. Report, University of Wisconsin-Madison, 1990, 20 pp.
[3] Sorenson J., “Two fast GCD algorithms”, J. Algorithms, 16:1 (1994), 110–144 | DOI | MR | Zbl
[4] Weber K., “The accelerated integer GCD algorithm”, ACM Trans. Math. Software, 21:1 (1995), 1–12 | DOI | MR
[5] Jebelean T., “A generalization of the binary GCD algorithm”, Proc. of Intern. Symp. on Symb. and Algebr. Comp., ISSAC'93, 1993, 111–116 | Zbl
[6] Ishmukhametov S. T., Rubtsova R. G., “A fast algorithm for counting GCD of natural numbers”, Proc. Intern. conf. Algebra, Analysis and Geometry, KFU, Kazan, 2016, 52–53
[7] Ishmukhametov S. T., “An approximating $k$-ary GCD algorithm”, Lobachevskii J. Math., 37:6 (2016), 722–728 | DOI | MR
[8] Hardy G. H., Wright E. M., An introduction to the theory of numbers, 4th Ed., Clarendon Press, Oxford, 1959 | MR
[9] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika. Matematicheskie osnovy informatiki, 2-e ispr. izd., Vilyams, 2015
[10] Ishmukhametov Sh. T., Metody faktorizatsii, KFU, Kazan, 2011
[11] Ishmukhametov Sh. T., Rubtsova R. G., Matematicheskie metody zaschity informatsii, Elektronnoe uchebnoe posobie, , KFU, Kazan, 2012 http://kpfu.ru/docs/F366166681/mzi.pdf
[12] Wang X., Pan V., “Acceleration of Euclidian algorithm and rational nimber reconstruction”, Siam J. Comp., 32:2 (2003), 548–556 | DOI | MR | Zbl