Two-level iterative method for non-stationary mixed variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 50-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mixed variational inequality problem involving a set-valued non-monotone mapping and a general convex function, where only approximation sequences are known instead of exact values of the cost mapping and function, and feasible set. We suggest to apply a two-level approach with inexact solutions of each particular problem with a descent method and partial penalization and evaluation of accuracy with the help of a gap function. Its convergence is attained without concordance of penalty, accuracy, and approximation parameters under coercivity type conditions.
Keywords: mixed variational inequality, non-stationarity, non-monotone mappings, potential mappings, approximate solutions, penalty method, gap function.
@article{IVM_2017_10_a5,
     author = {I. V. Konnov and Salahuddin},
     title = {Two-level iterative method for non-stationary mixed variational inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--61},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a5/}
}
TY  - JOUR
AU  - I. V. Konnov
AU  - Salahuddin
TI  - Two-level iterative method for non-stationary mixed variational inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 50
EP  - 61
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a5/
LA  - ru
ID  - IVM_2017_10_a5
ER  - 
%0 Journal Article
%A I. V. Konnov
%A Salahuddin
%T Two-level iterative method for non-stationary mixed variational inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 50-61
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a5/
%G ru
%F IVM_2017_10_a5
I. V. Konnov; Salahuddin. Two-level iterative method for non-stationary mixed variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 50-61. http://geodesic.mathdoc.fr/item/IVM_2017_10_a5/

[1] Lescarret C., “Cas d'addition des applications monotones maximales dan un espace de Hilbert”, Compt. Rend. Acad. Sci. (Paris), 261 (1965), 1160–1163 | MR | Zbl

[2] Browder F. E., “On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces”, Proc. Nat. Acad. Sci. USA, 56:2 (1966), 419–425 | DOI | MR | Zbl

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980

[4] Panagiotopulos P., Neravenstva v mekhanike i ikh prilozheniya, Mir, M., 1989

[5] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[6] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001 | MR | Zbl

[7] Konnov I. V., Nelineinaya optimizatsiya i variatsionnye neravenstva, Kazansk. un-t, Kazan, 2013

[8] Alart P., Lemaire B., “Penalization in non-classical convex programming via variational convergence”, Math. Program., 51:1 (1991), 307–331 | DOI | MR | Zbl

[9] Cominetti R., “Coupling the proximal point algorithm with approximation methods”, J. Optim. Theory Appl., 95:3 (1997), 581–600 | DOI | MR | Zbl

[10] Antipin A. S., Vasilev F. P., “Metod stabilizatsii dlya resheniya zadach ravnovesnogo programmirovaniya s netochno zadannym mnozhestvom”, Zhurn. vychisl. matem. i matem. fiz., 39:11 (1999), 1779–1786 | MR | Zbl

[11] Salmon G., Nguyen V. H., Strodiot J. J., “Coupling the auxiliary problem principle and epiconvergence theory for solving general variational inequalities”, J. Optim. Theory Appl., 104:3 (2000), 629–657 | DOI | MR | Zbl

[12] Kaplan A., Tichatschke R., “A general view on proximal point methods for variational inequalities in Hilbert spaces”, J. Nonlin. Conv. Anal., 2:3 (2001), 305–332 | MR | Zbl

[13] Konnov I. V., “Application of penalty methods to non-stationary variational inequalities”, Nonlinear Analysis: Theory, Methods and Appl., 92:1 (2013), 177–182 | DOI | MR | Zbl

[14] Konnov I. V., “Primenenie metoda shtrafov k nestatsionarnoi approksimatsii zadachi optimizatsii”, Izv. vuzov. Matem., 2014, no. 8, 60–68

[15] Konnov I. V., “An inexact penalty method for non stationary generalized variational inequalities”, Set-valued and variational anal., 23:2 (2015), 239–248 | DOI | MR | Zbl

[16] Fukushima M., Mine H., “A generalized proximal point algorithm for certain non-convex minimization problems”, Intern. J. Syst. Sci., 12:8 (1981), 989–1000 | DOI | MR | Zbl

[17] Patriksson M., “Cost approximation: a unified framework of descent algorithms for nonlinear programs”, SIAM J. Optim., 8:2 (1998), 561–582 | DOI | MR | Zbl

[18] Ermoliev Y. M., Norkin V. I., Wets R. J. B., “The minimization of semicontinuous functions: mollifier subgradient”, SIAM J. Contr. Optim., 33:1 (1995), 149–167 | DOI | MR | Zbl

[19] Czarnecki M.-O., Rifford L., “Approximation and regularization of Lipschitz functions: convergence of the gradients”, Trans. Amer. Math. Soc., 358:10 (2006), 4467–4520 | DOI | MR | Zbl

[20] Gwinner J., “On the penalty method for constrained variational inequalities”, Optimization: theory and algorithms, eds. J.-B. Hiriart-Urruty, W. Oettli, J. Stoer, Marcel Dekker, New York, 1981, 197–211 | MR

[21] Blum E., Oettli W., “From optimization and variational inequalities to equilibrium problems”, The Math. Student, 63:1 (1994), 123–145 | MR | Zbl