Solvability of autonomous differential equation with aftereffect on negative semi-axis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear autonomous homogeneous functional differential equation on the real negative semi-axis. We prove that if solutions belong to the special space of functions with integral limitations, then the space of solutions is finite-dimensional and its basis is formed by the solutions of the form $(t^m\exp(pt))$ generated by the roots of the characteristic equation. In contrast to the spaces used earlier, the pointwise estimation of solutions is replaced by the integral one. We adduce examples of differential equations with aftereffect and give the effective description of the space of solutions for these equations.
Keywords: functional differential equation, aftereffect, solvability on the axis, space of functions with exponential weight.
@article{IVM_2017_10_a3,
     author = {A. S. Balandin and T. L. Sabatulina},
     title = {Solvability of autonomous differential equation with aftereffect on negative semi-axis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--37},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_10_a3/}
}
TY  - JOUR
AU  - A. S. Balandin
AU  - T. L. Sabatulina
TI  - Solvability of autonomous differential equation with aftereffect on negative semi-axis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 26
EP  - 37
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_10_a3/
LA  - ru
ID  - IVM_2017_10_a3
ER  - 
%0 Journal Article
%A A. S. Balandin
%A T. L. Sabatulina
%T Solvability of autonomous differential equation with aftereffect on negative semi-axis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 26-37
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_10_a3/
%G ru
%F IVM_2017_10_a3
A. S. Balandin; T. L. Sabatulina. Solvability of autonomous differential equation with aftereffect on negative semi-axis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2017), pp. 26-37. http://geodesic.mathdoc.fr/item/IVM_2017_10_a3/

[1] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984

[2] Hastings S. P., “Backward existence and uniqueness for retarded functional differential equations”, J. Diff. Equat., 5 (1969), 441–451 | DOI | MR | Zbl

[3] Lillo J. C., “Backward continuation of retarded functional differential equations”, J. Diff. Equat., 17 (1975), 349–360 | DOI | MR | Zbl

[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972

[5] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[6] Plaksina V. P., Plaksina I. M., Plekhova E. V., “O razreshimosti zadachi Koshi dlya odnogo kvazilineinogo singulyarnogo funktsionalno-differentsialnogo uravneniya”, Izv. vuzov. Matem., 2016, no. 2, 54–61

[7] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[8] Schmidt E., “Über eine Klasse linearer funktionalen Differentialgleichungen”, Math. Ann., 1911, no. 70, 499–521 | DOI | MR

[9] Titchmarsh E. Ch., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948

[10] Green J. W., “A note on the solutions of the equation $f'(x)=f(x+a)$”, Math. Mag., 26:3 (1953), 117–120 | DOI | MR | Zbl

[11] Zverkin A. M., “O polnote sistemy reshenii tipa Floke dlya uravneniya s zapazdyvaniem”, Differents. uravneniya, 4:3 (1968), 474–478 | MR | Zbl

[12] Pitt H. R., “On a class of integro-differential equations”, Proc. Cambridge Phil. Soc., 40:3 (1944), 199–211 | DOI | MR | Zbl

[13] Balandin A. S., “O razreshimosti na osi nekotorykh klassov differentsialno-raznostnykh uravnenii”, Vestn. Tambovsk. un-ta. Ser.: Estestven. i tekhn. nauki, 18:5–2 (2013), 2449–2451

[14] Balandin A. S., “O razreshimosti na osi avtonomnykh differentsialnykh uravnenii s ogranichennym zapazdyvaniem”, Vestn. Tambovsk. un-ta. Ser.: Estestven. i tekhn. nauki, 20:5 (2015), 1044–1050

[15] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981

[16] Azbelev N. V., Simonov P. M., Stability of differential equations with aftereffects, Stability and control: theory, methods and appl., 20, Taylor Francis, London, 2003 | MR

[17] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963

[18] Zubov V. I., “K teorii lineinykh statsionarnykh sistem s zapazdyvayuschim argumentom”, Izv. vuzov. Matem., 1958, no. 6, 86–95 | Zbl

[19] Vagina M. Yu., “Logisticheskaya model s zapazdyvayuschim usredneniem”, Avtomatika i telemekhanika, 2003, no. 4, 167–173 | MR | Zbl

[20] Sabatulina T. L., Malygina V. V., “Nekotorye priznaki ustoichivosti lineinykh avtonomnykh differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Izv. vuzov. Matem., 2007, no. 6, 55–63

[21] Mulyukov M. V., “Ob asimptoticheskoi ustoichivosti dvuparametricheskikh sistem differentsialnykh uravnenii s zapazdyvaniem”, Izv. vuzov. Matem., 2014, no. 6, 48–55 | MR | Zbl