Binary quantum hashing
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 68-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a binary quantum hashing technique that allows to present binary inputs by quantum states. We prove the cryptographic properties of the quantum hashing, including its collision resistance and preimage resistance. We also give an efficient quantum algorithm that performs quantum hashing, and altogether this means that this function is quantum one-way. The proposed construction is asymptotically optimal in the number of qubits used.
Keywords: quantum computation, quantum cryptography, quantum hashing, binary linear codes, quantum branching programs.
@article{IVM_2016_9_a6,
     author = {A. V. Vasiliev},
     title = {Binary quantum hashing},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--73},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a6/}
}
TY  - JOUR
AU  - A. V. Vasiliev
TI  - Binary quantum hashing
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 68
EP  - 73
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a6/
LA  - ru
ID  - IVM_2016_9_a6
ER  - 
%0 Journal Article
%A A. V. Vasiliev
%T Binary quantum hashing
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 68-73
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a6/
%G ru
%F IVM_2016_9_a6
A. V. Vasiliev. Binary quantum hashing. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 68-73. http://geodesic.mathdoc.fr/item/IVM_2016_9_a6/

[1] Ablayev F. M., “Cryptographic quantum hashing”, Laser Physics Letters, 11:2 (2014), 025202 | DOI | MR

[2] Ablayev F., “Computing Boolean functions via quantum hashing”, Computing with New Resources, Lecture Notes in Computer Science, 8808, eds. C. S. Calude, R. Freivalds, I. Kazuo, Springer International Publishing, 2014, 149–160 | DOI | MR | Zbl

[3] Vasiliev A., “Quantum communications based on quantum hashing”, International J. Appl. Engineering Research, 10:12 (2015), 31415–31426

[4] Gottesman D., Chuang I., Quantum digital signatures, Tech. Rep., 2001, arXiv: quant-ph/0105032

[5] Ablayev F., “Quantum hashing via $\varepsilon$-universal hashing constructions and classical fingerprinting”, Lobachevskii J. Math., 36:2 (2015), 89–96 | DOI | MR | Zbl

[6] Stinson D. R., “On the connections between universal hashing, combinatorial designs and error-correcting codes”, Proc. Congressus Numerantium, 114 (1996), 7–27 | MR | Zbl

[7] Kholevo A. S., “Nekotorye otsenki dlya kolichestva informatsii, peredavaemogo kvantovym kanalom svyazi”, Probl. peredachi inform., 9:3 (1973), 3–11 | MR | Zbl

[8] Ablayev F., “On the concept of cryptographic quantum hashing”, Laser Physics Letters, 12:12 (2015), 125204 | DOI

[9] Naor J., “Small-bias probability spaces: Effcient constructions and applications”, Proceedings of the twenty second annual ACM Symposium on Theory of Computing, STOC'90, ACM, New York, NY, USA, 1990, 213–223 | DOI

[10] Alon N., Goldreich O., Hastad J., Peralta R., “Simple constructions of almost $k$-wise independent random variables”, Random Structures Algorithms, 3:3 (1992), 289–304 | DOI | MR | Zbl

[11] Ben-Aroya A., “Constructing small-bias sets from algebraic-geometric codes”, 50th Annual IEEE Symposium Foundations of Computer Science, FOCS'09, Oct. 2009, 191–197 | MR | Zbl

[12] Ablayev F., “On computational power of quantum branching programs”, Fundamentals of computation theory, Lecture Notes in Comput. Sci., 2138, Springer, Riga, 2001, 59–70 | MR | Zbl

[13] Alon N., “Random Cayley graphs and expanders”, Random Structures Algorithms, 5:2 (1994), 271–284 | DOI | MR | Zbl

[14] Buhrman H., Cleve R., Watrous J., deWolf R., “Quantum fingerprinting”, Phys. Rev. Lett., 87:16 (2001), 167902 ; arXiv: quant-ph/0102001v1 | DOI