Inverse problem for a~nonlinear Benney--Luke type integro-differential equations with degenerate kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 59-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the questions of unique solvability of the inverse problem for a nonlinear partial Benney–Luke type integro-differential equation of the fourth order with degenerate kernel. The method of degenerate kernel designed for Fredholm integral equations of the second kind is modified to the case of considered partial Benney–Luke type integro-differential equation of the fourth order. We use the Fourier method of separation of variables. After designation, the Benney–Luke type integro-differential equation is reduced to a system of algebraic equations. With the help of additional condition we obtain the countable system of nonlinear integral equations with respect to main unknown function. We use the method of successive approximations combined with the method of compressing maps. Further is defined the restore function.
Keywords: inverse problem, integro-differential equation, Benney–Luke type equation, degenerate kernel, system of algebraic equations, unique solvability.
@article{IVM_2016_9_a5,
     author = {T. K. Yuldashev},
     title = {Inverse problem for a~nonlinear {Benney--Luke} type integro-differential equations with degenerate kernel},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--67},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a5/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Inverse problem for a~nonlinear Benney--Luke type integro-differential equations with degenerate kernel
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 59
EP  - 67
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a5/
LA  - ru
ID  - IVM_2016_9_a5
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Inverse problem for a~nonlinear Benney--Luke type integro-differential equations with degenerate kernel
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 59-67
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a5/
%G ru
%F IVM_2016_9_a5
T. K. Yuldashev. Inverse problem for a~nonlinear Benney--Luke type integro-differential equations with degenerate kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 59-67. http://geodesic.mathdoc.fr/item/IVM_2016_9_a5/

[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[2] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-UralGU. Seriya: Matem. modelir. i programmirovanie, 7:2 (2014), 5–28 | Zbl

[3] Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. and Phys., 43:1 (1964), 309–313 | DOI | MR | Zbl

[4] Abzalimov R. R., Salyakhova E. V., “Raznostno-analiticheskii metod vychisleniya sobstvennykh znachenii dlya uravnenii chetvertogo poryadka s razdelennymi kraevymi usloviyami”, Izv. vuzov. Matem., 2008, no. 11, 3–11 | MR | Zbl

[5] Dzhuraev T. D., Loginov B. V., Malyugina I. A., “Vychisleniya sobstvennykh znachenii i sobstvennykh funktsii nekotorykh differentsialnykh operatorov tretego i chetvertogo poryadkov”, Differents. uravneniya matem. fiziki i ikh prilozheniya, Fan, Tashkent, 1989, 24–36 | MR

[6] Dzhuraev T. D., Sopuev A., K teorii differentsialnykh uravnenii v chastnykh proizvodnykh chetvertogo poryadka, Fan, Tashkent, 2000 | MR

[7] Mamedov I. G., “Fundamentalnoe reshenie nachalno-kraevoi zadachi dlya psevdoparabolicheskogo uravneniya chetvertogo poryadka s negladkimi koeffitsientami”, Vladikavkazsk. matem. zhurn., 12:1 (2010), 17–32 | MR | Zbl

[8] Mukminov F. Kh., Bikkulov I. M., “O stabilizatsii normy resheniya odnoi smeshannoi zadachi dlya parabolicheskikh uravnenii $4$-go i $6$-go poryadkov v neogranichennoi oblasti”, Matem. sb., 195:3 (2004), 115–142 | DOI | MR | Zbl

[9] Smirnov M. M., Modelnye uravneniya smeshannogo tipa chetvertogo poryadka, LGU, L., 1972

[10] Yuldashev T. K., “O smeshannoi zadache dlya nelineinogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s otrazhayuschim otkloneniem”, Vestn. Yuzhno-UralGU. Seriya: Matematika. Mekhanika. Fizika, 2011, no. 10(227), 40–48 | Zbl

[11] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, MGU, M., 1994

[12] Denisov A. M., Soloveva S. I., “Obratnaya zadacha dlya uravneniya diffuzii v sluchae sfericheskoi simmetrii”, Zhurn. vychisl. matem. i matem. fiz., 53:11 (2013), 1784–1790 | DOI | MR

[13] Kostin A. B., “Obratnaya zadacha vosstanovleniya istochnika v parabolicheskom uravnenii po usloviyu nelokalnogo nablyudeniya”, Matem. sb., 204:10 (2013), 3–46 | DOI | MR | Zbl

[14] Lavrentev M. M., Savelev L. Ya., Lineinye operatory i nekorrektnye zadachi, Nauka, M., 1991 | MR

[15] Megraliev Ya. T., “Ob odnoi obratnoi kraevoi zadache dlya ellipticheskogo uravneniya vtorogo poryadka s integralnym usloviem pervogo roda”, Tr. IMM UrO RAN, 19, no. 1, 2013, 226–235 | MR

[16] Prilepko A. I., Kostin A. B., “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matem. sb., 183:4 (1992), 49–68 | MR | Zbl

[17] Prilepko A. I., Tkachenko D. S., “Svoistva reshenii parabolicheskogo uravneniya i edinstvennost resheniya obratnoi zadachi ob istochnike s integralnym pereopredeleniem”, Zhurn. vychisl. matem. i matem. fiz., 43:4 (2003), 562–570 | MR | Zbl

[18] Romanov V. G., Obratnye zadachi dlya matematicheskoi fiziki, Nauka, M., 1984 | MR

[19] Sabitov K. B., Martemyanova N. V., “Obratnaya zadacha dlya uravneniya elliptiko-giperbolicheskogo tipa s nelokalnym granichnym usloviem”, Sib. matem. zhurn., 53:3 (2012), 633–647 | MR | Zbl

[20] Yuldashev T. K., “Obratnaya zadacha dlya odnogo nelineinogo integro-differentsialnogo uravneniya tretego poryadka”, Vestn. SamGU. Seriya estestvennonauchnaya, 2013, no. 9/1(110), 58–66 | Zbl

[21] Yuldashev T. K., “Obratnaya zadacha dlya odnogo integro-differentsialnogo uravneniya v chastnykh proizvodnykh tretego poryadka”, Vestn. SamGTU. Seriya: Fiz.-matem. nauki, 2014, no. 1(34), 56–65 | DOI

[22] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker Inc., New York–Basel, 2000 | MR | Zbl