On the solvability of nonlocal problem for a~hyperbolic equation of the second kind
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 51-58
Voir la notice de l'article provenant de la source Math-Net.Ru
In the characteristic triangle, for a hyperbolic equation of the second kind we study a nonlocal problem when boundary condition contains a linear combination of operators of fractional Riemann–Liouville integro-differentition. We establish intervals of change of orders of operators of fractional integro-differentiation associated with the parameters of the equation for which the problem is either uniquely solvable or has more than one solution.
Keywords:
operators of fractional integro-differentiation, Volterra integral equation of the second kind, method of successive approximations.
@article{IVM_2016_9_a4,
author = {O. A. Repin and S. K. Kumykova},
title = {On the solvability of nonlocal problem for a~hyperbolic equation of the second kind},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {51--58},
publisher = {mathdoc},
number = {9},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a4/}
}
TY - JOUR AU - O. A. Repin AU - S. K. Kumykova TI - On the solvability of nonlocal problem for a~hyperbolic equation of the second kind JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 51 EP - 58 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_9_a4/ LA - ru ID - IVM_2016_9_a4 ER -
O. A. Repin; S. K. Kumykova. On the solvability of nonlocal problem for a~hyperbolic equation of the second kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 51-58. http://geodesic.mathdoc.fr/item/IVM_2016_9_a4/