On the solvability of nonlocal problem for a~hyperbolic equation of the second kind
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 51-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the characteristic triangle, for a hyperbolic equation of the second kind we study a nonlocal problem when boundary condition contains a linear combination of operators of fractional Riemann–Liouville integro-differentition. We establish intervals of change of orders of operators of fractional integro-differentiation associated with the parameters of the equation for which the problem is either uniquely solvable or has more than one solution.
Keywords: operators of fractional integro-differentiation, Volterra integral equation of the second kind, method of successive approximations.
@article{IVM_2016_9_a4,
     author = {O. A. Repin and S. K. Kumykova},
     title = {On the solvability of nonlocal problem for a~hyperbolic equation of the second kind},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--58},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_9_a4/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - On the solvability of nonlocal problem for a~hyperbolic equation of the second kind
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 51
EP  - 58
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_9_a4/
LA  - ru
ID  - IVM_2016_9_a4
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T On the solvability of nonlocal problem for a~hyperbolic equation of the second kind
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 51-58
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_9_a4/
%G ru
%F IVM_2016_9_a4
O. A. Repin; S. K. Kumykova. On the solvability of nonlocal problem for a~hyperbolic equation of the second kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2016), pp. 51-58. http://geodesic.mathdoc.fr/item/IVM_2016_9_a4/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR

[3] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[4] Smirnov M. M., Vyrozhdayuschiesya giperbolicheskie uravneniya, Izd-vo Vyssh. shk., Minsk, 1977 | MR

[5] Smirnov M. M., Uravneniya smeshannogo tipa, Vyssh. shk., M., 1985 | MR

[6] Orazov I., “Ob odnoi kraevoi zadache so smescheniem dlya obobschennogo uravneniya Trikomi”, Differents. uravneniya, 17:2 (1981), 339–344 | MR

[7] Repin O. A., Kumykova S. K., “Nelokalnaya zadacha dlya uravneniya Bitsadze–Lykova”, Izv. vuzov. Matem., 2010, no. 3, 28–35 | MR | Zbl

[8] Repin O. A., Kumykova S. K., “Zadacha s obobschennymi operatorami drobnogo integro-differentsirovaniya proizvolnogo poryadka”, Izv. vuzov. Matem., 2012, no. 12, 59–71 | MR | Zbl

[9] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963 | MR

[10] Trikomi F., Integralnye uravneniya, In. lit., M., 1960 | MR