Differential forms on locally convex spaces and the Stokes formula
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 84-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a version of the Stokes formula for differential forms of finite codimension on a locally convex space (LCS). The main tool used to prove this formula is a surface layer theorem, previously proved by the first author. Moreover, on a subspace of differential forms of Sobolev type with respect to a differentiable measure, we obtain a formula expressing the operator adjoint to the exterior differential via standard operations of the calculus of differential forms and the logarithmic derivative. Previously, this relation was established under stronger assumptions on the LCS, the measure, or the smoothness of the differential forms.
Keywords: differentiable measures on infinite dimensional space, Stokes formula for measures, differential forms of finite codegrees, locally convex space.
@article{IVM_2016_8_a8,
     author = {E. Yu. Shamarova and N. N. Shamarov},
     title = {Differential forms on locally convex spaces and the {Stokes} formula},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--97},
     publisher = {mathdoc},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a8/}
}
TY  - JOUR
AU  - E. Yu. Shamarova
AU  - N. N. Shamarov
TI  - Differential forms on locally convex spaces and the Stokes formula
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 84
EP  - 97
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_8_a8/
LA  - ru
ID  - IVM_2016_8_a8
ER  - 
%0 Journal Article
%A E. Yu. Shamarova
%A N. N. Shamarov
%T Differential forms on locally convex spaces and the Stokes formula
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 84-97
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_8_a8/
%G ru
%F IVM_2016_8_a8
E. Yu. Shamarova; N. N. Shamarov. Differential forms on locally convex spaces and the Stokes formula. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 84-97. http://geodesic.mathdoc.fr/item/IVM_2016_8_a8/

[1] Smolyanov O. G., “Potoki de Rama i formula Stoksa v gilbertovom prostranstve”, DAN SSSR, 286:3 (1986), 554–558 | MR | Zbl

[2] fon Vaitszekker Kh., Smolyanov O. G., “Differentsialnye formy na beskonechnomernykh prostranstvakh i aksiomaticheskii podkhod k formule Stoksa”, Dokl. RAN, 367:2 (1999), 151–154 | MR

[3] fon Vaitszekker Kh., Leandr R., Smolyanov O. G., “Algebraicheskie svoistva beskonechnomernykh differentsialnykh form konechnoi kostepeni”, Dokl. RAN, 369:6 (1999), 727–731 | MR

[4] Shamarova E. Yu., “Ob approksimatsii poverkhnostnykh mer v lokalno vypuklom prostranstve”, Matem. zametki, 72:4 (2002), 597–616 | DOI | MR | Zbl

[5] Uglanov A. V., “Poverkhnostnye integraly v banakhovom prostranstve”, Matem. sb., 110(152):2 (1979), 189–217 | MR | Zbl

[6] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Nauka, M., 1970

[7] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR

[8] Diestel J., Uhl J. J., Vector measures, Mathematical Surveys and Monographs, 15, Amer. Math. Soc., 1977 | DOI | MR | Zbl

[9] Averbukh V. I., Smolyanov O. G., Fomin S. V., “Obobschennye funktsii i differentsialnye uravneniya na lineinykh prostranstvakh. I. Differentsiruemye mery”, Tr. MMO, 24, 1971, 133–174 | MR | Zbl

[10] Smolyanov O. G., von Weizsäcker H., “Differentiable families of measures”, J. Funct. Anal., 118:2 (1993), 454–476 | DOI | MR | Zbl

[11] Uglanov A. V., “Poverkhnostnye integraly v lineinykh topologicheskikh prostranstvakh”, Dokl. RAN, 344:4 (1995), 450–453 | MR | Zbl

[12] Uglanov A. V., Integration on infinite-dimensional surfaces and its applications, Math. and Appl., Kluwer Academic Publ., 2000 | MR | Zbl