Invariants of the action of a~semisimple Hopf algebra on PI-algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 21-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend classical results in the invariant theory of finite groups to the action of a finite-dimensional Hopf algebra $H$ on an algebra satisfying a polynomial identity. In particular, we prove that an $H$-module algebra $A$ over an algebraically closed field $\mathbf k$ is integral over the subalgebra of invariants, if $H$ is a semisimple and cosemisimple Hopf algebra. We show that if $\operatorname{char}\mathbf k>0$, then the algebra $Z(A)^{H_0}$ is integral over the subalgebra of central invariants $Z(A)^H$, where $Z(A)$ is the center of algebra $A$, $H_0$ is the coradical of $H$. This result allowed to prove that the algebra $A$ is integral over the subalgebra $Z(A)^H$ in some special case. We also construct a counterexample to the integrality of the algebra $A^{H_0}$ over the subalgebra of invariants $A^H$ for a pointed Hopf algebra over a field of non-zero characteristic.
Keywords: Hopf algebras, invariant theory, PI-algebras, rings of quotients, coradical.
@article{IVM_2016_8_a2,
     author = {M. S. Eryashkin},
     title = {Invariants of the action of a~semisimple {Hopf} algebra on {PI-algebra}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--34},
     publisher = {mathdoc},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a2/}
}
TY  - JOUR
AU  - M. S. Eryashkin
TI  - Invariants of the action of a~semisimple Hopf algebra on PI-algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 21
EP  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_8_a2/
LA  - ru
ID  - IVM_2016_8_a2
ER  - 
%0 Journal Article
%A M. S. Eryashkin
%T Invariants of the action of a~semisimple Hopf algebra on PI-algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 21-34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_8_a2/
%G ru
%F IVM_2016_8_a2
M. S. Eryashkin. Invariants of the action of a~semisimple Hopf algebra on PI-algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 21-34. http://geodesic.mathdoc.fr/item/IVM_2016_8_a2/

[1] Skryabin S. M., “Invariants of finite Hopf algebras”, Advances in Math., 183:2 (2004), 209–239 | DOI | MR | Zbl

[2] Montgomery S., Small L. W., “Integrality and prime ideals in fixed rings of PI rings,”, J. Pure and Appl. Algebra, 31 (1984), 185–190 | DOI | MR | Zbl

[3] Sweedler M. E., Hopf algebras, Benjamin, New York, 1969 | MR | Zbl

[4] Schelter W., “Integral extensions of rings satisfying a polynomial identity”, J. Algebra, 40 (1976), 245–257 | DOI | MR | Zbl

[5] Montgomery S., Hopf algebras and their actions on rings, CBMS Reg. Conf. Ser. Math., 85, Amer. Math. Soc., 1993 | DOI | MR

[6] Totok A. A., “Deistviya algebr Khopfa”, Matem. sb., 189:1 (1998), 149–160 | DOI | MR | Zbl

[7] Eryashkin M. S., “Invarianty i koltsa chastnykh $H$-polupervichnykh $H$-modulnykh algebr, udovletvoryayuschikh polinomialnomu tozhdestvu”, Izv. vuzov. Matem., 2016, no. 5, 22–40

[8] Etingof P., “Galois bimodules and integrality of PI comodule algebras over invariants”, J. of noncommutative geometry, 9:2 (2015), 567–602 | DOI | MR | Zbl

[9] Eryashkin M. S., “Invarianty deistviya poluprostoi konechnomernoi algebry Khopfa na algebrakh spetsialnogo vida”, Izv. vuzov. Matem., 2011, no. 8, 14–22 | MR | Zbl

[10] Eryashkin M. S., “Koltsa Martindeila i H-modulnye algebry, obladayuschie invariantnymi kharakteristicheskimi mnogochlenami”, Sib. matem. zhurn., 53:4 (2012), 822–838 | MR

[11] Etingof P., Walton C., “Pointed Hopf actions on fields. I”, Transformation Groups, 20:4 (2015), 986–1013 | DOI | MR

[12] Rowen L. H., Polynomial identities in ring theory, Academic Press, New York, 1980 | MR | Zbl

[13] Skryabin S. M., “Structure of $H$-semiprime artinian algebras”, Algebr. Represent. Theor., 14 (2011), 803–822 | DOI | MR | Zbl

[14] Braun A., “The nilpotency of the radical in a finitely generated P.I. ring”, J. Algebra, 89 (1984), 375–396 | DOI | MR | Zbl

[15] Larson R. G., Radford D. E., “Semisimple cosemisimple Hopf algebras”, Amer. J. Math., 110 (1988), 187–195 | DOI | MR | Zbl

[16] Larson R. G., Radford D. E., “Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple”, J. Algebra, 117 (1988), 267–289 | DOI | MR | Zbl

[17] Larson R. G., “Characters of Hopf algebras”, J. Algebra, 17 (1971), 352–368 | DOI | MR | Zbl

[18] Etingof P., Gelaki S., “On finite-dimensional semisimple and cosemisimple Hopf algebras in prime characteristic”, Inter. Math. Research Notices, 16 (1998), 851–864 | DOI | MR | Zbl

[19] Linchenko V., Montgomery S., “Semiprime smash products and $H$-stable prime radicals for PI-algebras”, Proc. Amer. Math. Soc., 135:10 (2007), 3091–3098 | DOI | MR | Zbl

[20] Linchenko V., Montgomery S., Small L. W., “Stable Jacobson radicals and semiprime smash products”, Bull. London Math. Soc., 37 (2005), 860–872 | DOI | MR | Zbl

[21] Montgomery S., Schneider H. J., “Prime ideals in Hopf Galois extensions”, Israel J. Math., 112:1 (1999), 187–235 | DOI | MR | Zbl

[22] Braun A., Vonessen N., “Integrality for PI-rings”, J. Algebra, 151 (1992), 39–79 | DOI | MR | Zbl