Commuting elements in conjugacy class of finite groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 12-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we state methods of verification of the following conjecture: The non-identity conjugacy class in finite simple group contains two commuting elements. As an illustration, we consider sporadic groups, projective group $L_n(q)$ and alternating group $A_n$.
Keywords: left distributive groupoid, modules over finite fields.
Mots-clés : simple group, conjugacy class
@article{IVM_2016_8_a1,
     author = {V. M. Galkin and L. N. Erofeeva and S. V. Leshcheva},
     title = {Commuting elements in conjugacy class of finite groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--20},
     publisher = {mathdoc},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a1/}
}
TY  - JOUR
AU  - V. M. Galkin
AU  - L. N. Erofeeva
AU  - S. V. Leshcheva
TI  - Commuting elements in conjugacy class of finite groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 12
EP  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_8_a1/
LA  - ru
ID  - IVM_2016_8_a1
ER  - 
%0 Journal Article
%A V. M. Galkin
%A L. N. Erofeeva
%A S. V. Leshcheva
%T Commuting elements in conjugacy class of finite groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 12-20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_8_a1/
%G ru
%F IVM_2016_8_a1
V. M. Galkin; L. N. Erofeeva; S. V. Leshcheva. Commuting elements in conjugacy class of finite groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 12-20. http://geodesic.mathdoc.fr/item/IVM_2016_8_a1/

[1] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[2] Matveev S. V., “Distributivnye gruppoidy v teorii uzlov”, Matem. sb., 119(1610:1 (1982), 78–88 | MR | Zbl

[3] Galkin V. M., “Kvazigruppy”, Itogi nauki i tekhn. Ser. Algebra. Topologicheskaya geometriya, 26, 1988, 3–44 | MR | Zbl

[4] Erofeeva L. N., $L$-gruppoidy, Diss. $\dots$ kand. fiz.-matem. nauk, Sankt-Peterburg, 2003

[5] Erofeeva L. N., “Ob odnom klasse gruppoidov”, Zap. nauchn. semin. POMI, 305, 2003, 136–143 | MR | Zbl

[6] Galkin V. M., Mokhnina N. V., “O nekotorykh avtomorfizmakh na ortogonalnykh gruppakh v nechetnoi kharakteristike”, Matem. zametki, 70:1 (2001), 27–37 | DOI | MR | Zbl

[7] Lescheva S. V., Suvorova O. V., “O $\varphi$-strukture na gruppe $^3D_4$”, Izv. vuzov, Matem., 1999, no. 10, 19–22 | MR | Zbl

[8] Galkin V. M., “O simmetricheskikh kvazigruppakh”, UMN, 39:6 (1984), 191–192 | MR | Zbl

[9] Conway I. H., Atlas of finite groups, Oxford, 1985

[10] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR

[11] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965 | MR

[12] Leng S., Algebra, Mir, M.