Commuting elements in conjugacy class of finite groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 12-20
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we state methods of verification of the following conjecture: The non-identity conjugacy class in finite simple group contains two commuting elements. As an illustration, we consider sporadic groups, projective group $L_n(q)$ and alternating group $A_n$.
Keywords:
left distributive groupoid, modules over finite fields.
Mots-clés : simple group, conjugacy class
Mots-clés : simple group, conjugacy class
@article{IVM_2016_8_a1,
author = {V. M. Galkin and L. N. Erofeeva and S. V. Leshcheva},
title = {Commuting elements in conjugacy class of finite groups},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {12--20},
publisher = {mathdoc},
number = {8},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_8_a1/}
}
TY - JOUR AU - V. M. Galkin AU - L. N. Erofeeva AU - S. V. Leshcheva TI - Commuting elements in conjugacy class of finite groups JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 12 EP - 20 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_8_a1/ LA - ru ID - IVM_2016_8_a1 ER -
V. M. Galkin; L. N. Erofeeva; S. V. Leshcheva. Commuting elements in conjugacy class of finite groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2016), pp. 12-20. http://geodesic.mathdoc.fr/item/IVM_2016_8_a1/