The method of mechanical quadratures for integral equations with fixed singularity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 83-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the method of mechanical quadratures for integral equations with fixed singularity. We establish estimates of the error of this method based on a quadrature process, which is the best in the class of differentiable functions. We prove the convergence of the method in finite-dimensional and uniform metrics. We find that the investigated quadrature method is optimal by order on the Hölder class of functions.
Keywords: integral equation, accuracy, optimality.
Mots-clés : quadrature process, solution, convergence
@article{IVM_2016_7_a8,
     author = {L. A. Onegov},
     title = {The method of mechanical quadratures for integral equations with fixed singularity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--91},
     publisher = {mathdoc},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_7_a8/}
}
TY  - JOUR
AU  - L. A. Onegov
TI  - The method of mechanical quadratures for integral equations with fixed singularity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 83
EP  - 91
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_7_a8/
LA  - ru
ID  - IVM_2016_7_a8
ER  - 
%0 Journal Article
%A L. A. Onegov
%T The method of mechanical quadratures for integral equations with fixed singularity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 83-91
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_7_a8/
%G ru
%F IVM_2016_7_a8
L. A. Onegov. The method of mechanical quadratures for integral equations with fixed singularity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 83-91. http://geodesic.mathdoc.fr/item/IVM_2016_7_a8/

[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[2] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M., 1962 | MR

[3] Gavurin M. K., Lektsii po metodam vychislenii, Nauka, M., 1971 | MR

[4] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Kazansk. gos. un-t, Kazan, 1980 | MR

[5] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanus”, M., 1995 | MR

[6] Gabbasov N. S., “Optimalnyi metod resheniya integralnykh uravnenii tretego roda”, Dokl. RAN, 362:1 (1998), 12–15 | MR | Zbl

[7] Gabbasov N. S., “Metody resheniya lineinogo integralnogo uravneniya s yadrom, imeyuschim nepodvizhnye osobennosti”, Izv. vuzov. Matem., 2001, no. 5, 12–20 | MR | Zbl

[8] Gabbasov N. S., Metody resheniya integralnykh uravnenii Fredgolma v prostranstvakh obobschennykh funktsii, Kazansk. gos. un-t, Kazan, 2006

[9] Gabbasov N. S., Zamaliev R. R., “Spetsialnyi variant metoda podoblastei dlya integralnykh uravnenii tretego roda s osobennostyami v yadre”, Izv. vuzov. Matem., 2014, no. 10, 19–26 | MR | Zbl

[10] Onegov L. A., “Ob odnoi nailuchshei kvadraturnoi formule dlya singulyarnykh integralov s nepodvizhnoi osobennostyu”, Izv. vuzov. Matem., 1981, no. 9, 76–79 | MR | Zbl

[11] Boikov I. V., Optimalnye po tochnosti algoritmy priblizhennogo vychisleniya singulyarnykh integralov, Saratovsk. gos. un-t, Saratov, 1983

[12] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR