On the solvability of nonlinear partial differential equations of high order with deviating argument in lowest terms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 10-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a solution to higher order partial differential equation with discrete deviation of the argument in lowest terms. The proof is carried out by the method of separation of variables. We also investigate the boundary-value problem for a particular case of the corresponding fourth order nonlinear equation.
Keywords: partial differential equation, deviating argument, Fourier method, boundary-value problem, method of asymptotic expansions.
@article{IVM_2016_7_a1,
     author = {O. I. Bzheumikhova and V. N. Lesev},
     title = {On the solvability of nonlinear partial differential equations of high order with deviating argument in lowest terms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--17},
     publisher = {mathdoc},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_7_a1/}
}
TY  - JOUR
AU  - O. I. Bzheumikhova
AU  - V. N. Lesev
TI  - On the solvability of nonlinear partial differential equations of high order with deviating argument in lowest terms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 10
EP  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_7_a1/
LA  - ru
ID  - IVM_2016_7_a1
ER  - 
%0 Journal Article
%A O. I. Bzheumikhova
%A V. N. Lesev
%T On the solvability of nonlinear partial differential equations of high order with deviating argument in lowest terms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 10-17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_7_a1/
%G ru
%F IVM_2016_7_a1
O. I. Bzheumikhova; V. N. Lesev. On the solvability of nonlinear partial differential equations of high order with deviating argument in lowest terms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2016), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2016_7_a1/

[1] Daghana D., Donmezb O., Tunaa A., “Explicit solutions of the nonlinear partial differential equations”, Nonlinear Anal.: Real World Appl., 11:3 (2011), 2152–2163 | DOI | MR

[2] Fenga Zh., Kuangb J., “Boundary value problem for a nonlinear equation of mixed type”, J. Diff. Equat., 255:10 (2013), 3029–3052 | DOI | MR

[3] Ghotbi A. R., Barari A., Omidvar M., Ganji D. D., “Application of variational iteration method to coupled system of nonlinear partial differential physical equations”, African J. Math. Comp. Sci. Research, 2:4 (2009), 63–68

[4] Weickert J., “Applications of nonlinear diffusion in image processing and computer vision”, Acta Math. Univ. Comenianae, 70:1 (2001), 33–50 | MR | Zbl

[5] Bzheumikhova O. I., Lesev V. N., “Application of Fourier method to investigation of the Dirichlet problem for partial differential equations with deviating arguments”, Intern. J. Diff. Equat. Appl., 12:2 (2013), 103–120 | Zbl

[6] Khasawneh F. A., Mann B. P., Barton D. A. W., “Periodic solutions of nonlinear delay differential equations using spectral element method”, Nonlinear dynamics, 67:1 (2012), 641–658 | DOI | MR | Zbl

[7] Li X., Yuan X., “Quasi-periodic solutions for perturbed autonomous delay differential equations”, J. Diff. Equat., 252:6 (2012), 3752–3796 | DOI | MR | Zbl

[8] Sieber J., Szalai R., “Characteristic matrices for linear periodic delay differential equations”, SIAM J. Appl. Dynam. Syst., 10:1 (2011), 29–147 | DOI | MR

[9] Polyanin A. D., Zhurov A. I., “Metod funktsionalnykh svyazei: tochnye resheniya nelineinykh reaktsionno-diffuzionnykh uravnenii s zapazdyvaniem”, Vestn. Nats. issledov. yadern. un-ta “MIFI”, 2:4 (2013), 425–431 | DOI

[10] Polyanin A. D., Zhurov A. I., “Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations”, Commun. Nonlinear Sci. Numerical Simulation, 19:3 (2014), 417–430 | DOI | MR

[11] Polyanin A. D., Zhurov A. I., “Non-linear instability and exact solutions to some delay reaction-diffusion systems”, Intern. J. Non-Linear Mechanics, 62 (2014), 33–40 | DOI

[12] Meleshko S. V., Moyo S., “On the complete group classification of the reaction-diffusion equation with a delay”, J. Math. Anal. Appl., 338:1 (2008), 448–466 | DOI | MR | Zbl

[13] Rezounenko A. V., “Stability of positive solutions of local partial differential equations with a nonlinear integral delay term”, Electronic J. Qualitative Theory Diff. Equat., 17, Proc. 8th Coll. QTDE (2008), 1–7 | MR

[14] Rezounenko A. V., “Non-linear partial differential equations with discrete state-dependent delays in a metric space”, Nonlinear Anal.: Theory, Methods and Appl., 73:6 (2010), 1707–1714 | DOI | MR | Zbl

[15] Aleshin P. S., Zarubin A. N., “Nachalno-kraevaya zadacha dlya uravneniya fraktalnoi diffuzii s raspredelennym zapazdyvaniem”, Mater. konf. “SamDiff”, Samara, 2007, 5–8

[16] Alyoshin P. S., “Trikomi Problem for a mixed type equation with fractional derivetive and distributed lag”, Math. Modelling and Anal., Abstracts of the 12th Intern. Conf. MMA2007, Trakai, 2007, 18

[17] Aleshin P. S., Zarubin A. N., “Nachalno-kraevaya zadacha dlya differentsialno-raznostnogo uravneniya diffuzii s drobnoi proizvodnoi i rapredelennym zapazdyvaniem”, Differents. uravneniya, 43:10 (2007), 1363–1368 | MR | Zbl

[18] Zarubin A. N., “Zadacha Gellerstedta dlya differentsialno-raznostnogo uravneniya smeshannogo tipa s operezhayusche-zapazdyvayuschimi kratnymi otkloneniyami argumenta”, Differents. uravneniya, 49:10 (2013), 1308–1315 | MR | Zbl

[19] Novakovskaya L. I., “Construction of oscillating solutions of first-order nonlinear differential equations with deviating argument”, Ukrainian Math. J., 33:4 (1981), 404–409 | DOI | MR