Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_6_a7, author = {N. V. Smirnova and S. I. Tarashnina}, title = {On properties of solutions of cooperative {TU-games}}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {73--85}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a7/} }
N. V. Smirnova; S. I. Tarashnina. On properties of solutions of cooperative TU-games. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 73-85. http://geodesic.mathdoc.fr/item/IVM_2016_6_a7/
[1] Scarf H., “The core of an $N$ person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl
[2] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM J. Appl. Math., 17 (1969), 1163–1170 | DOI | MR | Zbl
[3] Shapley L. S., “A value for $n$-person games”, Contribution to the Theory of Games, v. II, eds. H. W. Kunn, A. W. Tucker, Princeton Univ. Press, 1953, 307–317 | MR
[4] Sudhölter P., “The modified nucleolus: properties and axiomatizations”, Int. J. Game Theory, 26 (1997), 147–182 | DOI | MR | Zbl
[5] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, TOP, 19:1 (2011), 150–166 | DOI | MR | Zbl
[6] Smirnova N. V., Tarashnina S. I., “Ob odnom obobschenii $N$-yadra v kooperativnykh igrakh”, Diskretn. analiz i issledovanie operatsii, 18:4 (2011), 77–93 | MR | Zbl
[7] Smirnova N. V., Tarashnina S. I., “Geometricheskie svoistva $[0,1]$-$N$-yadra v kooperativnykh TP-igrakh”, Matem. teoriya igr i ee prilozh., 4:1 (2012), 55–73 | Zbl
[8] Maschler M., “The bargaining set, kernel, and nucleolus: a survey”, Handbook of Game Theory, v. 1, eds. Aumann R. J., Hart S., Elsevier Sci. Publ. BV, 1992, 591–665 | MR
[9] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. un-ta v Sankt-Peterburge, SPb., 2004
[10] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Kluwer Acad. Publ., Boston–Dordrecht–London, 2003 | MR