On properties of solutions of cooperative TU-games
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 73-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the capacity of a solution concept of cooperative TU-game we propose the $\alpha$-$N$-prenucleoli set, $\alpha\in R$, which is a generalization of the $[0,1]$-prenucleolus. We show that in a cooperative game the $\alpha$-$N$-prenucleoli set takes into account the constructive power with weight $\alpha$ and the blocking power with weight $(1-\alpha)$ for all possible values of the parameter $\alpha$. Having introduced two independent parameters we obtain the same result – the set of vectors which coincides with the set of $\alpha$-prenucleoli. Moreover, the $\alpha$-$N$-prenucleoli set satisfies duality and independence of an excess arrangement. Finally, the covariance property has been expanded. Some examples are given to illustrate the results.
Keywords: TU-game, $N$-prenucleolus, $SM$-nucleolus, $[0,1]$-prenucleolus, $\alpha$-prenucleoli set, duality.
@article{IVM_2016_6_a7,
     author = {N. V. Smirnova and S. I. Tarashnina},
     title = {On properties of solutions of cooperative {TU-games}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--85},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a7/}
}
TY  - JOUR
AU  - N. V. Smirnova
AU  - S. I. Tarashnina
TI  - On properties of solutions of cooperative TU-games
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 73
EP  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_6_a7/
LA  - ru
ID  - IVM_2016_6_a7
ER  - 
%0 Journal Article
%A N. V. Smirnova
%A S. I. Tarashnina
%T On properties of solutions of cooperative TU-games
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 73-85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_6_a7/
%G ru
%F IVM_2016_6_a7
N. V. Smirnova; S. I. Tarashnina. On properties of solutions of cooperative TU-games. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 73-85. http://geodesic.mathdoc.fr/item/IVM_2016_6_a7/

[1] Scarf H., “The core of an $N$ person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl

[2] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM J. Appl. Math., 17 (1969), 1163–1170 | DOI | MR | Zbl

[3] Shapley L. S., “A value for $n$-person games”, Contribution to the Theory of Games, v. II, eds. H. W. Kunn, A. W. Tucker, Princeton Univ. Press, 1953, 307–317 | MR

[4] Sudhölter P., “The modified nucleolus: properties and axiomatizations”, Int. J. Game Theory, 26 (1997), 147–182 | DOI | MR | Zbl

[5] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, TOP, 19:1 (2011), 150–166 | DOI | MR | Zbl

[6] Smirnova N. V., Tarashnina S. I., “Ob odnom obobschenii $N$-yadra v kooperativnykh igrakh”, Diskretn. analiz i issledovanie operatsii, 18:4 (2011), 77–93 | MR | Zbl

[7] Smirnova N. V., Tarashnina S. I., “Geometricheskie svoistva $[0,1]$-$N$-yadra v kooperativnykh TP-igrakh”, Matem. teoriya igr i ee prilozh., 4:1 (2012), 55–73 | Zbl

[8] Maschler M., “The bargaining set, kernel, and nucleolus: a survey”, Handbook of Game Theory, v. 1, eds. Aumann R. J., Hart S., Elsevier Sci. Publ. BV, 1992, 591–665 | MR

[9] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. un-ta v Sankt-Peterburge, SPb., 2004

[10] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Kluwer Acad. Publ., Boston–Dordrecht–London, 2003 | MR