Optimal two-sided boundary control of heat transmission in a~rod. Hyperbolic model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 54-60

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider mixed problem for one-dimensional hyperbolic system of thermal conductivity equations. We construct a class of boundary controls that provide given distribution on phase vector $(T,q)$ in a given moment of time. From this class we choose a control by the Lagrange method that minimize a square functional of loss.
Keywords: hyperbolic conductivity, boundary phase vector control, reduction of boundary control to starting one, Riemann matrices of first and second kind.
@article{IVM_2016_6_a5,
     author = {R. K. Romanovskii and Yu. A. Medvedev},
     title = {Optimal two-sided boundary control of heat transmission in a~rod. {Hyperbolic} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--60},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a5/}
}
TY  - JOUR
AU  - R. K. Romanovskii
AU  - Yu. A. Medvedev
TI  - Optimal two-sided boundary control of heat transmission in a~rod. Hyperbolic model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 54
EP  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_6_a5/
LA  - ru
ID  - IVM_2016_6_a5
ER  - 
%0 Journal Article
%A R. K. Romanovskii
%A Yu. A. Medvedev
%T Optimal two-sided boundary control of heat transmission in a~rod. Hyperbolic model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 54-60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_6_a5/
%G ru
%F IVM_2016_6_a5
R. K. Romanovskii; Yu. A. Medvedev. Optimal two-sided boundary control of heat transmission in a~rod. Hyperbolic model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 54-60. http://geodesic.mathdoc.fr/item/IVM_2016_6_a5/