Optimal two-sided boundary control of heat transmission in a~rod. Hyperbolic model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 54-60
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider mixed problem for one-dimensional hyperbolic system of thermal conductivity equations. We construct a class of boundary controls that provide given distribution on phase vector $(T,q)$ in a given moment of time. From this class we choose a control by the Lagrange method that minimize a square functional of loss.
Keywords:
hyperbolic conductivity, boundary phase vector control, reduction of boundary control to starting one, Riemann matrices of first and second kind.
@article{IVM_2016_6_a5,
author = {R. K. Romanovskii and Yu. A. Medvedev},
title = {Optimal two-sided boundary control of heat transmission in a~rod. {Hyperbolic} model},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {54--60},
publisher = {mathdoc},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a5/}
}
TY - JOUR AU - R. K. Romanovskii AU - Yu. A. Medvedev TI - Optimal two-sided boundary control of heat transmission in a~rod. Hyperbolic model JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 54 EP - 60 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_6_a5/ LA - ru ID - IVM_2016_6_a5 ER -
R. K. Romanovskii; Yu. A. Medvedev. Optimal two-sided boundary control of heat transmission in a~rod. Hyperbolic model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 54-60. http://geodesic.mathdoc.fr/item/IVM_2016_6_a5/