Initial segments of computable linear orders with computable natural relations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the algorithmic complexity of natural relations on initial segments of computable linear orders. We prove that there exists a computable linear order with computable density relation such that its $\Pi^0_1$-initial segment has no computable presentation with computable density relation. We also prove that the same holds for right limit and left limit relations.
Keywords: linear orders, initial segments, density relation, right limit relation, left limit relation.
@article{IVM_2016_6_a1,
     author = {R. I. Bikmukhametov},
     title = {Initial segments of computable linear orders with computable natural relations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_6_a1/}
}
TY  - JOUR
AU  - R. I. Bikmukhametov
TI  - Initial segments of computable linear orders with computable natural relations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 15
EP  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_6_a1/
LA  - ru
ID  - IVM_2016_6_a1
ER  - 
%0 Journal Article
%A R. I. Bikmukhametov
%T Initial segments of computable linear orders with computable natural relations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 15-26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_6_a1/
%G ru
%F IVM_2016_6_a1
R. I. Bikmukhametov. Initial segments of computable linear orders with computable natural relations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2016), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2016_6_a1/

[1] Moses M., Recursive properties of isomophism types, Ph. D. Thesis, Monash Univ., Clayton, Victoria, Australia, 1983

[2] Moses M., “Recursive linear orders with recursive successivities”, Ann. Pure Appl. Logic, 27 (1984), 253–264 | DOI | MR | Zbl

[3] Goncharov S. C., Dzgoev V. D., “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[4] Remmel J. B., “Recursively categorical linear orderings”, Proc. Amer. Math. Soc., 83 (1981), 387–391 | DOI | MR | Zbl

[5] Frolov A. N., “Lineinye poryadki nizkoi stepeni”, Sib. matem. zhurn., 51:5 (2010), 1147–1162 | MR | Zbl

[6] Thurber J. J., “Every $\mathrm{low}_2$ Boolean algebra has a recursive copy”, Proc. Amer. Math. Soc., 123:12 (1995), 3859–3866 | MR | Zbl

[7] Alaev P., Terber Dzh., Frolov A. N., “Vychislimost na lineinykh poryadkakh, obogaschennykh predikatami”, Algebra i logika, 48:5 (2009), 549–563 | MR | Zbl

[8] Frolov A. N., “Scattered linear orderings with no computable presentation”, Lobachevskii J. Math., 35:1 (2014), 19–22 | DOI | MR | Zbl

[9] Turner W. P., Computable linear orders and Turing reductions, Master's Thesis, Univ. of Connecticut, 2012

[10] Raw M. J. S., Complexity of automorphisms of recursive linear orders, Ph. D. Thesis, Univ. of Wisconsin-Madison, 1995 | MR | Zbl

[11] Coles R. J., Downey R. G., Khoussainov B., “On initial segments of computable linear orders”, Order, 14:2 (1997), 107–124 | DOI | MR

[12] Zubkov M. V., “O nachalnykh segmentakh vychislimykh lineinykh poryadkov s dopolnitelnymi vychislimymi predikatami”, Algebra i logika, 48:5 (2009), 564–579 | MR | Zbl