On well-posedness of generalized neural field equations with impulsive control
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear nonlocal integral equation generalizing equations typically used in mathematical neuroscience. We investigate solutions tending to zero at any fixed moment with unbounded growth of the spatial variable (these solutions correspond to normal brain functioning). We consider an impulsive control problem, which models electrical stimulation used in the presence of various diseases of central nervous system. We define suitable complete metric space, where we obtain conditions for existence, uniqueness and extendability of solution to the problem as well as continuous dependence of this solution on the impulsive control.
Keywords: nonlinear integral equations, neural field equations, impulsive control, well-posedness.
Mots-clés : Volterra equations
@article{IVM_2016_5_a5,
     author = {E. O. Burlakov and E. S. Zhukovskii},
     title = {On well-posedness of generalized neural field equations with impulsive control},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--79},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/}
}
TY  - JOUR
AU  - E. O. Burlakov
AU  - E. S. Zhukovskii
TI  - On well-posedness of generalized neural field equations with impulsive control
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 75
EP  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/
LA  - ru
ID  - IVM_2016_5_a5
ER  - 
%0 Journal Article
%A E. O. Burlakov
%A E. S. Zhukovskii
%T On well-posedness of generalized neural field equations with impulsive control
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 75-79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/
%G ru
%F IVM_2016_5_a5
E. O. Burlakov; E. S. Zhukovskii. On well-posedness of generalized neural field equations with impulsive control. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Introduction to the theory of functional differential equations: methods and applications, Hindawi Publishing Corporation, New York, 2007 | MR | Zbl

[2] Amari S., “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biol. Cybern., 27:2 (1977), 77–87 | DOI | MR | Zbl

[3] Coombes S., “Waves, bumps, and patterns in neural field theories”, Biol. Cybern., 93:2 (2005), 91–108 | DOI | MR | Zbl

[4] Blomquist P., Wyller J., Einevoll G. T., “Localized activity patterns in two-population neuronal networks”, Physica D, 206:9 (2005), 180–212 | DOI | MR | Zbl

[5] Faye G., Faugeras O., “Some theoretical and numerical results for delayed neural field equations”, Physica D, 239:9 (2010), 561–578 | DOI | MR | Zbl

[6] Malyutina E., Wyller J., Ponosov A., “Two bump solutions of a homogenized Wilson–Cowan model with periodic microstructure”, Physica D, 271:1 (2014), 19–31 | DOI | MR | Zbl

[7] Sompolinsky H., Shapley R., “New perspectives on the mechanisms for orientation selectivity”, Curr. Opin. Neurobiol., 5:7 (1997), 514–522 | DOI

[8] Taube J. S., Bassett J. P., “Persistent neural activity in head direction cells”, Cereb. Cortex, 13:11 (2003), 1162–1172 | DOI

[9] Fuster J. M., Alexander G., “Neuron activity related to short-term memory”, Science, 173:3997 (1971), 652–654 | DOI

[10] Wang X-J., “Synaptic reverberation underlying mnemonic persistent activity”, Trends Neurosci., 24:8 (2001), 455–463 | DOI

[11] Pinotsis D. A., Leite M., Friston K. J., “On conductance-based neural field models”, Frontiers in Comput. Neurosci., 7 (2013), 158 | DOI

[12] Tass P. A., “A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations”, Biol. Cybern., 89:2 (2003), 81–88 | DOI | MR | Zbl

[13] Suffczynski P., Kalitzin S., Lopes Da Silva F. H., “Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network”, Neurosci., 126:2 (2004), 467–484 | DOI

[14] Kramer M. A., Lopour B. A., Kirsch H. E., Szeri A. J., “Bifurcation control of a seizing human cortex”, Phys. Rev. E, 73 (2006), 419–428 | DOI | MR

[15] Schiff S. J., “Towards model-based control of Parkinson's disease”, Philos. Trans. of the Royal Soc. A: Math., Phys. and Engin. Sci., 368:1918 (2010), 2269–2308 | DOI | MR | Zbl

[16] Ruths J., Taylor P., Dauwels J., “Optimal control of an epileptic neural population model”, Proc. Intern. Fed. of Automat. Contr., Cape Town, 2014, 3116–3121

[17] Zhukovskii E. S., “Nepreryvnaya zavisimost ot parametrov reshenii uravnenii Volterra”, Matem. sb., 197:10 (2006), 33–56 | DOI | MR | Zbl

[18] Burlakov E., Zhukovskiy E., Ponosov A., Wyller J., “On wellposedness of generalized neural field equations with delay”, J. Abstr. Dif. Eq. Appl., 6:1 (2015), 51–80 | MR | Zbl

[19] Burlakov E., Zhukovskiy E. S., “Existence, uniqueness and continuous dependence on control of solutions to generalized neural field equations”, Vestn. Tambovsk. un-ta. Ser.: Estestv. i tekhnich. nauki, 20:1 (2015), 9–16