Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_5_a5, author = {E. O. Burlakov and E. S. Zhukovskii}, title = {On well-posedness of generalized neural field equations with impulsive control}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {75--79}, publisher = {mathdoc}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/} }
TY - JOUR AU - E. O. Burlakov AU - E. S. Zhukovskii TI - On well-posedness of generalized neural field equations with impulsive control JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 75 EP - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/ LA - ru ID - IVM_2016_5_a5 ER -
E. O. Burlakov; E. S. Zhukovskii. On well-posedness of generalized neural field equations with impulsive control. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Introduction to the theory of functional differential equations: methods and applications, Hindawi Publishing Corporation, New York, 2007 | MR | Zbl
[2] Amari S., “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biol. Cybern., 27:2 (1977), 77–87 | DOI | MR | Zbl
[3] Coombes S., “Waves, bumps, and patterns in neural field theories”, Biol. Cybern., 93:2 (2005), 91–108 | DOI | MR | Zbl
[4] Blomquist P., Wyller J., Einevoll G. T., “Localized activity patterns in two-population neuronal networks”, Physica D, 206:9 (2005), 180–212 | DOI | MR | Zbl
[5] Faye G., Faugeras O., “Some theoretical and numerical results for delayed neural field equations”, Physica D, 239:9 (2010), 561–578 | DOI | MR | Zbl
[6] Malyutina E., Wyller J., Ponosov A., “Two bump solutions of a homogenized Wilson–Cowan model with periodic microstructure”, Physica D, 271:1 (2014), 19–31 | DOI | MR | Zbl
[7] Sompolinsky H., Shapley R., “New perspectives on the mechanisms for orientation selectivity”, Curr. Opin. Neurobiol., 5:7 (1997), 514–522 | DOI
[8] Taube J. S., Bassett J. P., “Persistent neural activity in head direction cells”, Cereb. Cortex, 13:11 (2003), 1162–1172 | DOI
[9] Fuster J. M., Alexander G., “Neuron activity related to short-term memory”, Science, 173:3997 (1971), 652–654 | DOI
[10] Wang X-J., “Synaptic reverberation underlying mnemonic persistent activity”, Trends Neurosci., 24:8 (2001), 455–463 | DOI
[11] Pinotsis D. A., Leite M., Friston K. J., “On conductance-based neural field models”, Frontiers in Comput. Neurosci., 7 (2013), 158 | DOI
[12] Tass P. A., “A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations”, Biol. Cybern., 89:2 (2003), 81–88 | DOI | MR | Zbl
[13] Suffczynski P., Kalitzin S., Lopes Da Silva F. H., “Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network”, Neurosci., 126:2 (2004), 467–484 | DOI
[14] Kramer M. A., Lopour B. A., Kirsch H. E., Szeri A. J., “Bifurcation control of a seizing human cortex”, Phys. Rev. E, 73 (2006), 419–428 | DOI | MR
[15] Schiff S. J., “Towards model-based control of Parkinson's disease”, Philos. Trans. of the Royal Soc. A: Math., Phys. and Engin. Sci., 368:1918 (2010), 2269–2308 | DOI | MR | Zbl
[16] Ruths J., Taylor P., Dauwels J., “Optimal control of an epileptic neural population model”, Proc. Intern. Fed. of Automat. Contr., Cape Town, 2014, 3116–3121
[17] Zhukovskii E. S., “Nepreryvnaya zavisimost ot parametrov reshenii uravnenii Volterra”, Matem. sb., 197:10 (2006), 33–56 | DOI | MR | Zbl
[18] Burlakov E., Zhukovskiy E., Ponosov A., Wyller J., “On wellposedness of generalized neural field equations with delay”, J. Abstr. Dif. Eq. Appl., 6:1 (2015), 51–80 | MR | Zbl
[19] Burlakov E., Zhukovskiy E. S., “Existence, uniqueness and continuous dependence on control of solutions to generalized neural field equations”, Vestn. Tambovsk. un-ta. Ser.: Estestv. i tekhnich. nauki, 20:1 (2015), 9–16