On well-posedness of generalized neural field equations with impulsive control
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 75-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider nonlinear nonlocal integral equation generalizing equations typically used in mathematical neuroscience. We investigate solutions tending to zero at any fixed moment with unbounded growth of the spatial variable (these solutions correspond to normal brain functioning). We consider an impulsive control problem, which models electrical stimulation used in the presence of various diseases of central nervous system. We define suitable complete metric space, where we obtain conditions for existence, uniqueness and extendability of solution to the problem as well as continuous dependence of this solution on the impulsive control.
Keywords:
nonlinear integral equations, neural field equations, impulsive control, well-posedness.
Mots-clés : Volterra equations
Mots-clés : Volterra equations
@article{IVM_2016_5_a5,
author = {E. O. Burlakov and E. S. Zhukovskii},
title = {On well-posedness of generalized neural field equations with impulsive control},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {75--79},
publisher = {mathdoc},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/}
}
TY - JOUR AU - E. O. Burlakov AU - E. S. Zhukovskii TI - On well-posedness of generalized neural field equations with impulsive control JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 75 EP - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/ LA - ru ID - IVM_2016_5_a5 ER -
E. O. Burlakov; E. S. Zhukovskii. On well-posedness of generalized neural field equations with impulsive control. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2016), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2016_5_a5/