On similarity classes of second order matrices with zero trace over the ring of integers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 79-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of similarity of matrices over integers and describe canonical representatives of the similarity classes of $2\times2$ matrices with zero trace and determinant equal to an odd power of a prime number.
Keywords: similarity of matrices, the ring of integers, canonical matrices.
@article{IVM_2016_4_a9,
     author = {S. V. Sidorov},
     title = {On similarity classes of second order matrices with zero trace over the ring of integers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--86},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_4_a9/}
}
TY  - JOUR
AU  - S. V. Sidorov
TI  - On similarity classes of second order matrices with zero trace over the ring of integers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 79
EP  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_4_a9/
LA  - ru
ID  - IVM_2016_4_a9
ER  - 
%0 Journal Article
%A S. V. Sidorov
%T On similarity classes of second order matrices with zero trace over the ring of integers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 79-86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_4_a9/
%G ru
%F IVM_2016_4_a9
S. V. Sidorov. On similarity classes of second order matrices with zero trace over the ring of integers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2016), pp. 79-86. http://geodesic.mathdoc.fr/item/IVM_2016_4_a9/

[1] Latimer C. G., MacDuffee C. C., “A correspondence between classes of ideals and classes of matrices”, Ann. Math., 34:2 (1933), 313–316 | DOI | MR | Zbl

[2] Taussky O., “On a theorem of Latimer and MacDuffee”, Canad. J. Math., 1 (1949), 300–302 | DOI | MR | Zbl

[3] Faddeev D. K., “Ob ekvivalentnosti sistem tselochislennykh matrits”, Izv. AN SSSR. Ser. matem., 30:2 (1966), 449–454 | MR | Zbl

[4] Grunewald F., “Solution of the conjugacy problem in certain arithmetic groups”, Word Problems, v. II, ed. Adian S. I., Boone W. W., Higman G., North-Holland, Amsterdam, 1980, 101–139 | DOI | MR

[5] Sarkisyan R. A., “Problema sopryazhennosti dlya naborov tselochislennykh matrits”, Matem. zametki, 25:6 (1979), 811–824 | MR | Zbl

[6] Sidorov S. V., “O podobii matrits s tselochislennym spektrom nad koltsom tselykh chisel”, Izv. vuzov. Matem., 2011, no. 3, 86–94 | MR | Zbl

[7] Shevchenko V. N., Sidorov S. V., “O podobii matrits vtorogo poryadka nad koltsom tselykh chisel”, Izv. vuzov. Matem., 2006, no. 4, 57–64 | MR | Zbl

[8] Appelgate H., Onishi H., “The similarity problem for $3\times3$ integer matrices”, Linear Algebra Appl., 42 (1982), 159–174 | DOI | MR | Zbl

[9] Sidorov S. V., “O podobii matrits tretego poryadka nad koltsom tselykh chisel, imeyuschikh privodimyi kharakteristicheskii mnogochlen”, Vestn. NNGU. Ser. matem. modelir. i optimal. upravlenie, 2009, no. 1, 119–127 | MR

[10] Lagarias J. C., “On the computational complexity of determining the solvability or unsolvability of the equation $X^2-DY^2=-1$”, Trans. Amer. Math. Soc., 260:2 (1980), 485–508 | MR | Zbl

[11] Ankeny N. C., Artin E., Chowla S., “The class-number of real quadratic number fields”, Ann. Math. Second Ser., 56:3 (1952), 479–493 | DOI | MR | Zbl