Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_2_a9, author = {A. V. Chernov}, title = {On the structure of a~solution set of controlled initial-boundary value problems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {75--86}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a9/} }
A. V. Chernov. On the structure of a~solution set of controlled initial-boundary value problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 75-86. http://geodesic.mathdoc.fr/item/IVM_2016_2_a9/
[1] Chernov A. V., “O vypuklosti mnozhestv dostizhimosti upravlyaemykh nachalno-kraevykh zadach”, Differents. uravneniya, 50:5 (2014), 702–712 | DOI | MR | Zbl
[2] Polyak B., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of continuous, discrete and impulsive systems. Ser. A: Math. Anal., 11:2–3 (2004), 255–268 | MR
[3] Raisig G., “Vypuklost mnozhestv dostizhimosti sistem upravleniya”, Avtomatika i telemekhanika, 2007, no. 9, 64–78 | MR | Zbl
[4] Cannarsa P., Sinestrari C., “Convexity properties of the minimum time function”, Calc. Var. Partial Diff. Equat., 3:3 (1995), 273–298 | DOI | MR | Zbl
[5] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107 | MR | Zbl
[6] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2012, no. 3, 62–73 | MR | Zbl
[7] Chernov A. V., “O volterrovom obobschenii metoda monotonizatsii dlya nelineinykh funktsionalno-operatornykh uravnenii”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2012, no. 2, 84–99 | Zbl
[8] Chernov A. V., “Ob odnom obobschenii metoda monotonnykh operatorov”, Differents. uravneniya, 49:4 (2013), 535–544 | MR | Zbl
[9] Potapov D. K., “Zadachi upravleniya dlya uravnenii so spektralnym parametrom i razryvnym operatorom pri nalichii vozmuschenii”, Zhurn. Sib. un-ta. Ser. matem. i fiz., 5:2 (2012), 239–245
[10] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR
[11] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR
[12] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR
[13] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR
[14] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[15] Chernov A. V., “O neotritsatelnosti resheniya pervoi kraevoi zadachi dlya parabolicheskogo uravneniya”, Vestn. Nizhegorodsk. un-ta im. N. I. Lobachevskogo, 2012, no. 5(1), 167–170
[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[17] Vorobev A. Kh., Diffuzionnye zadachi v khimicheskoi kinetike, MGU, M., 2003
[18] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, Graduate Stud. Math., 112, American Math. Soc., Providence, R.I., 2010 | MR | Zbl
[19] Lubyshev F. V., Manapova A. R., “Raznostnye approksimatsii zadach optimizatsii dlya polulineinykh ellipticheskikh uravnenii v vypukloi oblasti s upravleniyami v koeffitsientakh pri starshikh proizvodnykh”, Zhurn. vychisl. matem. i matem. fiz., 53:1 (2013), 20–46 | DOI | MR | Zbl
[20] Vakhitov I. S., “Obratnaya zadacha identifikatsii starshego koeffitsienta v uravnenii diffuzii-reaktsii”, Dalnevostochn. matem. zhurn., 10:2 (2010), 93–105 | MR
[21] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, KGU, Kazan, 2012
[22] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR