Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_2_a4, author = {A. A. Koshelev}, title = {The {Landau--Kolmogorov} problem for the {Laplace} operator on a~ball}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {31--39}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a4/} }
A. A. Koshelev. The Landau--Kolmogorov problem for the Laplace operator on a~ball. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 31-39. http://geodesic.mathdoc.fr/item/IVM_2016_2_a4/
[1] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR
[2] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6(312) (1996), 89–124 | DOI | MR | Zbl
[3] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003
[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[5] Arestov V. V., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye zadachi”, Matem. zametki, 40:2 (1986), 269–285 | MR | Zbl
[6] Arestov V. V., “Nailuchshee priblizhenie odnogo klassa funktsii mnogikh peremennykh drugim i rodstvennye ekstremalnye zadachi”, Matem. zametki, 64:3 (1998), 323–340 | DOI | MR | Zbl
[7] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbran. tr. Matem., mekhanika, Nauka, M., 1985, 252–263
[8] Tikhomirov V. M., Magaril-Ilyaev G. G., “Neravenstva dlya proizvodnykh”: Kolmogorov A. N., Izbran. tr., v. 1, Matem. i mekhan., Nauka, M., 2005, 428–431
[9] Domar Y., “An extremal problem related to Kolmogoroff's inequality for bounded functions”, Arkiv för Mat., 7 (1968), 433–441 | DOI | MR | Zbl
[10] Schoenberg I. J., Cavaretta A., “Solution of Landau's problem concerning higher derivatives on the halfline”, Proc. Int. Conf. “Constructive function theory” (Varna, May 19–25, 1970), Sofia, 1972, 297–308 | MR | Zbl
[11] Konovalov V. N., “Tochnye neravenstva dlya norm funktsii, tretikh chastnykh, vtorykh smeshannykh ili kosykh proizvodnykh”, Matem. zametki, 23:1 (1978), 67–78 | MR | Zbl
[12] Timofeev V. G., “Neravenstvo tipa Landau dlya funktsii neskolkikh peremennykh”, Matem. zametki, 37:2 (1985), 676–689 | MR | Zbl
[13] Timoshin O. A., “Tochnye neravenstva mezhdu normami chastnykh proizvodnykh vtorogo i tretego poryadka”, Dokl. RAN, 344:1 (1995), 20–22 | MR | Zbl
[14] Buslaev A. P., “O priblizhenii operatora differentsirovaniya”, Matem. zametki, 25:5 (1981), 731–742 | MR | Zbl
[15] Kounchev O., “Extremizers for the multivariate Landau–Kolmogorov inequality”, Multivariate approximation. Recent trends and results, Math. Res., 101, Akademie Verlag, 1997, 123–132 | MR | Zbl
[16] Koshelev A. A., “Nailuchshee $L_p$ priblizhenie operatora Laplasa lineinymi ogranichennymi operatorami na klassakh funktsii dvukh i trekh peremennykh”, Tr. In-ta matem. mekhan. UrO RAN, 17, no. 3, 2011, 217–224
[17] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[18] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[19] Koshelev A. A., “Nailuchshee priblizhenie operatora Laplasa lineinymi ogranichennymi operatorami v prostranstve $L_p$”, Izv. vuzov. Matem., 2011, no. 6, 63–74 | MR | Zbl
[20] Koshelev A. A., “Best approximation of the Laplace operator on the plane by linear bounded operators”, East J. Approx., 14:2 (2008), 29–40 | MR