The Landau--Kolmogorov problem for the Laplace operator on a~ball
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we solve the problem of maximizing the value of the Laplace operator at the origin for functions such that the second degree of the Laplace operator belongs to the space $L_\infty$ on the unit ball of the Euclidean space. The problem is solved under restrictions on the uniform norm of a function and the $L_\infty$-norm of ther second degree of the Laplace operator of this function.
Keywords: Landau–Kolmogorov problem, Landau–Kolmogorov inequality, Laplace operator.
@article{IVM_2016_2_a4,
     author = {A. A. Koshelev},
     title = {The {Landau--Kolmogorov} problem for the {Laplace} operator on a~ball},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--39},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a4/}
}
TY  - JOUR
AU  - A. A. Koshelev
TI  - The Landau--Kolmogorov problem for the Laplace operator on a~ball
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 31
EP  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a4/
LA  - ru
ID  - IVM_2016_2_a4
ER  - 
%0 Journal Article
%A A. A. Koshelev
%T The Landau--Kolmogorov problem for the Laplace operator on a~ball
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 31-39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a4/
%G ru
%F IVM_2016_2_a4
A. A. Koshelev. The Landau--Kolmogorov problem for the Laplace operator on a~ball. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 31-39. http://geodesic.mathdoc.fr/item/IVM_2016_2_a4/

[1] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR

[2] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6(312) (1996), 89–124 | DOI | MR | Zbl

[3] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003

[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[5] Arestov V. V., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye zadachi”, Matem. zametki, 40:2 (1986), 269–285 | MR | Zbl

[6] Arestov V. V., “Nailuchshee priblizhenie odnogo klassa funktsii mnogikh peremennykh drugim i rodstvennye ekstremalnye zadachi”, Matem. zametki, 64:3 (1998), 323–340 | DOI | MR | Zbl

[7] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbran. tr. Matem., mekhanika, Nauka, M., 1985, 252–263

[8] Tikhomirov V. M., Magaril-Ilyaev G. G., “Neravenstva dlya proizvodnykh”: Kolmogorov A. N., Izbran. tr., v. 1, Matem. i mekhan., Nauka, M., 2005, 428–431

[9] Domar Y., “An extremal problem related to Kolmogoroff's inequality for bounded functions”, Arkiv för Mat., 7 (1968), 433–441 | DOI | MR | Zbl

[10] Schoenberg I. J., Cavaretta A., “Solution of Landau's problem concerning higher derivatives on the halfline”, Proc. Int. Conf. “Constructive function theory” (Varna, May 19–25, 1970), Sofia, 1972, 297–308 | MR | Zbl

[11] Konovalov V. N., “Tochnye neravenstva dlya norm funktsii, tretikh chastnykh, vtorykh smeshannykh ili kosykh proizvodnykh”, Matem. zametki, 23:1 (1978), 67–78 | MR | Zbl

[12] Timofeev V. G., “Neravenstvo tipa Landau dlya funktsii neskolkikh peremennykh”, Matem. zametki, 37:2 (1985), 676–689 | MR | Zbl

[13] Timoshin O. A., “Tochnye neravenstva mezhdu normami chastnykh proizvodnykh vtorogo i tretego poryadka”, Dokl. RAN, 344:1 (1995), 20–22 | MR | Zbl

[14] Buslaev A. P., “O priblizhenii operatora differentsirovaniya”, Matem. zametki, 25:5 (1981), 731–742 | MR | Zbl

[15] Kounchev O., “Extremizers for the multivariate Landau–Kolmogorov inequality”, Multivariate approximation. Recent trends and results, Math. Res., 101, Akademie Verlag, 1997, 123–132 | MR | Zbl

[16] Koshelev A. A., “Nailuchshee $L_p$ priblizhenie operatora Laplasa lineinymi ogranichennymi operatorami na klassakh funktsii dvukh i trekh peremennykh”, Tr. In-ta matem. mekhan. UrO RAN, 17, no. 3, 2011, 217–224

[17] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[18] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[19] Koshelev A. A., “Nailuchshee priblizhenie operatora Laplasa lineinymi ogranichennymi operatorami v prostranstve $L_p$”, Izv. vuzov. Matem., 2011, no. 6, 63–74 | MR | Zbl

[20] Koshelev A. A., “Best approximation of the Laplace operator on the plane by linear bounded operators”, East J. Approx., 14:2 (2008), 29–40 | MR