On a~convergence in $L_p$ of the Cesaro means оf Fourier series with monotonic coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 24-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study a convergence in $L_p$, $1$, of the Cesaro means of negative order for sine and cosine Fourier series with monotonic coefficients.
Keywords:
Cesaro means, integral modulus of continuity, Fourier series with monotonic coefficients, summability in $L_p$ space.
@article{IVM_2016_2_a3,
author = {L. N. Galoyan},
title = {On a~convergence in $L_p$ of the {Cesaro} means {\cyro}f {Fourier} series with monotonic coefficients},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {24--30},
publisher = {mathdoc},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a3/}
}
TY - JOUR AU - L. N. Galoyan TI - On a~convergence in $L_p$ of the Cesaro means оf Fourier series with monotonic coefficients JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 24 EP - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_2_a3/ LA - ru ID - IVM_2016_2_a3 ER -
L. N. Galoyan. On a~convergence in $L_p$ of the Cesaro means оf Fourier series with monotonic coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 24-30. http://geodesic.mathdoc.fr/item/IVM_2016_2_a3/