On a~convergence in $L_p$ of the Cesaro means оf Fourier series with monotonic coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 24-30

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a convergence in $L_p$, $1$, of the Cesaro means of negative order for sine and cosine Fourier series with monotonic coefficients.
Keywords: Cesaro means, integral modulus of continuity, Fourier series with monotonic coefficients, summability in $L_p$ space.
@article{IVM_2016_2_a3,
     author = {L. N. Galoyan},
     title = {On a~convergence in $L_p$ of the {Cesaro} means {\cyro}f {Fourier} series with monotonic coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--30},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a3/}
}
TY  - JOUR
AU  - L. N. Galoyan
TI  - On a~convergence in $L_p$ of the Cesaro means оf Fourier series with monotonic coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 24
EP  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a3/
LA  - ru
ID  - IVM_2016_2_a3
ER  - 
%0 Journal Article
%A L. N. Galoyan
%T On a~convergence in $L_p$ of the Cesaro means оf Fourier series with monotonic coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 24-30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a3/
%G ru
%F IVM_2016_2_a3
L. N. Galoyan. On a~convergence in $L_p$ of the Cesaro means оf Fourier series with monotonic coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 24-30. http://geodesic.mathdoc.fr/item/IVM_2016_2_a3/