Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 90-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a mapping with weighted bounded $(p,q)$-distortion can be extended by continuity to a set whose family of asymptotic curves has modulus zero. We also establish a counterpart to Iversen's theorem for a mapping with weighted bounded $(n,n)$-distortion.
Keywords: mapping with weighted bounded $(p,q)$-distortion, capacity, modulus, asymptotic curve, asymptotic value.
@article{IVM_2016_1_a9,
     author = {M. V. Tryamkin},
     title = {Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {90--94},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a9/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 90
EP  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_1_a9/
LA  - ru
ID  - IVM_2016_1_a9
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 90-94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_1_a9/
%G ru
%F IVM_2016_1_a9
M. V. Tryamkin. Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 90-94. http://geodesic.mathdoc.fr/item/IVM_2016_1_a9/

[1] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR

[2] Martio O., Rickman S., Väisälä J., “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. AI, 465 (1970), 1–13 | MR

[3] Poletskii E. A., “O stiranii osobennostei kvazikonformnykh otobrazhenii”, Matem. sb., 92(134):2 (1973), 242–256 | MR | Zbl

[4] Rickman S., Quasiregular mappings, Springer-Verlag, 1993 | MR | Zbl

[5] Baikin A. N., Vodopyanov S. K., “Emkostnye otsenki, teoremy Liuvillya i ob ustranenii osobennostei dlya otobrazhenii s ogranichennym $(p,q)$-iskazheniem”, Sib. matem. zhurn., 56:2 (2015), 290–321 | MR

[6] Gurevich V., Volmen G., Teoriya razmernosti, GIIL, Moskva, 1948

[7] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, Leningrad, 1985 | MR

[8] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford, 1993 | MR | Zbl

[9] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Springer-Verlag, 1971 | MR | Zbl

[10] Tryamkin M. V., “Otsenki na moduli semeistv krivykh dlya otobrazhenii s vesovym ogranichennym $(p,q)$-iskazheniem”, Vladikavkazsk. matem. zhurn., 17:3 (2015), 65–74