Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 90-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a mapping with weighted bounded $(p,q)$-distortion can be extended by continuity to a set whose family of asymptotic curves has modulus zero. We also establish a counterpart to Iversen's theorem for a mapping with weighted bounded $(n,n)$-distortion.
Keywords:
mapping with weighted bounded $(p,q)$-distortion, capacity, modulus, asymptotic curve, asymptotic value.
@article{IVM_2016_1_a9,
author = {M. V. Tryamkin},
title = {Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {90--94},
publisher = {mathdoc},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a9/}
}
TY - JOUR AU - M. V. Tryamkin TI - Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 90 EP - 94 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_1_a9/ LA - ru ID - IVM_2016_1_a9 ER -
M. V. Tryamkin. Asymptotic curves and asymptotic values for mappings with weighted bounded $(p,q)$-distortion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 90-94. http://geodesic.mathdoc.fr/item/IVM_2016_1_a9/