Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_12_a7, author = {An. A. Novikov and P. A. Novikov}, title = {Information inequalities for characteristics of group sequential test with groups of observations of random size}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {66--75}, publisher = {mathdoc}, number = {12}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/} }
TY - JOUR AU - An. A. Novikov AU - P. A. Novikov TI - Information inequalities for characteristics of group sequential test with groups of observations of random size JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 66 EP - 75 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/ LA - ru ID - IVM_2016_12_a7 ER -
%0 Journal Article %A An. A. Novikov %A P. A. Novikov %T Information inequalities for characteristics of group sequential test with groups of observations of random size %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 66-75 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/ %G ru %F IVM_2016_12_a7
An. A. Novikov; P. A. Novikov. Information inequalities for characteristics of group sequential test with groups of observations of random size. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 66-75. http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/
[1] Novikov A., “Optimal sequential tests for two simple hypotheses based on independent observations”, International J. Pure and Appl. Math., 45:2 (2008), 291–314 | MR | Zbl
[2] Novikov A., “Optimal sequential procedures with Bayes decision rules”, Kybernetika, 46:4 (2010), 754–770 | MR | Zbl
[3] Novikov A., “Optimal sequential multiple hypothesis tests”, Kybernetika, 45:2 (2009), 309–330 | MR | Zbl
[4] Novikov A., “Optimal sequential tests for two simple hypotheses”, Sequential Anal., 28:2 (2009), 188–217 | DOI | MR | Zbl
[5] Novikov A., Novikov P., “Locally most powerful sequential tests of a simple hypothesis vs one-sided alternatives”, J. Stat. Plann. Inference, 140:3 (2010), 750–765 | DOI | MR | Zbl
[6] Novikov An. A., Novikov P. A., “Lokalno naibolee moschnye posledovatelnye kriterii proverki prostykh gipotez protiv odnostoronnikh alternativ dlya nezavisimykh nablyudenii”, Teor. veroyat. prim., 56:3 (2011), 449–477 | DOI | MR
[7] Kulbak S., Teoriya informatsii i statistika, Nauka, M., 1967
[8] Berk R. H., “Locally most powerful sequential tests”, Ann. Statistics, 3:2 (1975), 373–381 | DOI | MR | Zbl
[9] Müller-Funk U., Pukelsheim F., Witting H., “Locally most powerful tests for two-sided hypotheses”, Probability and statistical decision theory, Bad Tatzmannsdorf, 1983, v. A, Reidel, Dordrecht, 1985, 31–56 | MR
[10] Novikov A., “Locally most powerful two-stage tests”, Prague Stochastics 2006, Proc. of the joint session of 7th Prague Symp. on Asymp. Statist. and 15th Prague Conf. on Inform. Theory, Statist. Decision Functions and Random Processes (Prague, August 21–25, 2006), Matfyzpress, Charles University in Prague, Prague, 2006, 554–567
[11] Irle A., Sequentialanalyse. Optimale sequentielle tests, Teubner, Stuttgart, 1990 | MR | Zbl