Information inequalities for characteristics of group sequential test with groups of observations of random size
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 66-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a group sequential test for testing a simple hypothesis against a composite one-sided alternative, which defines the following sequential statistical procedure: At each stage a random number of independent identically distributed observations (a group of observations) is observed and, based on the collected data, the decision to accept or to reject the hypothesis or to continue the observation is made. For the test with finite (under the null hypothesis) average sizes of groups of observations we prove the existence of the derivative of the power function and establish the information-type inequalities relating that derivative to other characteristics of the test: the average sizes of groups of observations and type I error.
Keywords: sequential analysis, sequential hypothesis testing, group sequential test, groups of observations of random size, derivative of power function.
@article{IVM_2016_12_a7,
     author = {An. A. Novikov and P. A. Novikov},
     title = {Information inequalities for characteristics of group sequential test with groups of observations of random size},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--75},
     publisher = {mathdoc},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/}
}
TY  - JOUR
AU  - An. A. Novikov
AU  - P. A. Novikov
TI  - Information inequalities for characteristics of group sequential test with groups of observations of random size
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 66
EP  - 75
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/
LA  - ru
ID  - IVM_2016_12_a7
ER  - 
%0 Journal Article
%A An. A. Novikov
%A P. A. Novikov
%T Information inequalities for characteristics of group sequential test with groups of observations of random size
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 66-75
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/
%G ru
%F IVM_2016_12_a7
An. A. Novikov; P. A. Novikov. Information inequalities for characteristics of group sequential test with groups of observations of random size. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 66-75. http://geodesic.mathdoc.fr/item/IVM_2016_12_a7/

[1] Novikov A., “Optimal sequential tests for two simple hypotheses based on independent observations”, International J. Pure and Appl. Math., 45:2 (2008), 291–314 | MR | Zbl

[2] Novikov A., “Optimal sequential procedures with Bayes decision rules”, Kybernetika, 46:4 (2010), 754–770 | MR | Zbl

[3] Novikov A., “Optimal sequential multiple hypothesis tests”, Kybernetika, 45:2 (2009), 309–330 | MR | Zbl

[4] Novikov A., “Optimal sequential tests for two simple hypotheses”, Sequential Anal., 28:2 (2009), 188–217 | DOI | MR | Zbl

[5] Novikov A., Novikov P., “Locally most powerful sequential tests of a simple hypothesis vs one-sided alternatives”, J. Stat. Plann. Inference, 140:3 (2010), 750–765 | DOI | MR | Zbl

[6] Novikov An. A., Novikov P. A., “Lokalno naibolee moschnye posledovatelnye kriterii proverki prostykh gipotez protiv odnostoronnikh alternativ dlya nezavisimykh nablyudenii”, Teor. veroyat. prim., 56:3 (2011), 449–477 | DOI | MR

[7] Kulbak S., Teoriya informatsii i statistika, Nauka, M., 1967

[8] Berk R. H., “Locally most powerful sequential tests”, Ann. Statistics, 3:2 (1975), 373–381 | DOI | MR | Zbl

[9] Müller-Funk U., Pukelsheim F., Witting H., “Locally most powerful tests for two-sided hypotheses”, Probability and statistical decision theory, Bad Tatzmannsdorf, 1983, v. A, Reidel, Dordrecht, 1985, 31–56 | MR

[10] Novikov A., “Locally most powerful two-stage tests”, Prague Stochastics 2006, Proc. of the joint session of 7th Prague Symp. on Asymp. Statist. and 15th Prague Conf. on Inform. Theory, Statist. Decision Functions and Random Processes (Prague, August 21–25, 2006), Matfyzpress, Charles University in Prague, Prague, 2006, 554–567

[11] Irle A., Sequentialanalyse. Optimale sequentielle tests, Teubner, Stuttgart, 1990 | MR | Zbl