Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_11_a6, author = {F. G. Avkhadiev and R. G. Nasibullin and I. K. Shafigullin}, title = {Becker type univalence conditions for harmonic mappings}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {80--85}, publisher = {mathdoc}, number = {11}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a6/} }
TY - JOUR AU - F. G. Avkhadiev AU - R. G. Nasibullin AU - I. K. Shafigullin TI - Becker type univalence conditions for harmonic mappings JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 80 EP - 85 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_11_a6/ LA - ru ID - IVM_2016_11_a6 ER -
F. G. Avkhadiev; R. G. Nasibullin; I. K. Shafigullin. Becker type univalence conditions for harmonic mappings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2016_11_a6/
[1] Ahlfors L., Weill G., “A uniqueness theorem for Beltrami equations”, Proc. Amer. Math. Soc., 13:6 (1962), 975–978 | DOI | MR | Zbl
[2] Becker J., “Löwnersche Differentialgleichung und quasikonform fort-setzbare schlichte Functionen”, J. Reine Angew. Math., 255 (1972), 23–43 | MR | Zbl
[3] Becker J., “Löwnersche Differentialgleichung und Schlichtheitskriterien”, Math. Ann., 202:4 (1973), 321–335 | DOI | MR | Zbl
[4] Avkhadiev F. G., Aksentev L. A., “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4 (1975), 3–60 | MR | Zbl
[5] Avkhadiev F. G., “Dostatochnye usloviya odnolistnosti kvazikonformnykh otobrazhenii”, Matem. zametki, 18:6 (1975), 793–802 | MR | Zbl
[6] Ruscheweyh S., “An extension of Becker's univalence condition”, Math. Ann., 220:3 (1976), 285–290 | DOI | MR | Zbl
[7] Becker J., Pommerenke Ch., “Schlichtheitskriterien und Jordangebiete”, J. Reine Angew. Math., 354 (1984), 74–94 | MR | Zbl
[8] Avkhadiev F. G., “Dopustimye funktsionaly v usloviyakh odnolistnosti dlya differentsiruemykh otobrazhenii $n$-mernykh oblastei”, Izv. vuzov. Matem., 1989, no. 4, 3–12 | MR | Zbl
[9] Avhadiev F. G., Kayumov I. R., “Admissible functionals and infinite-valent functions”, Complex Variables, 18:1 (1999), 35–45 | DOI | MR
[10] Lewy H., “On the non-vanishing of the Jacobian in certain one-to-one mappings”, Bull. Amer. Math. Soc., 42:10 (1936), 689–692 | DOI | MR | Zbl
[11] Duren P., Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[12] Hernández R., Martín M. J., “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl
[13] Gevirtz J., “An upper bound for the John constant”, Proc. Amer. Math. Soc., 83:3 (1981), 476–478 | DOI | MR | Zbl
[14] Chen Sh. L., Ponnusamy S., Rasila A., Wang X. T., “Linear connectivity, Schwarz–Pick lemma and univalency criteria for planar harmonic mapping”, Acta Math. Sin., Engl. Ser., 32:3 (2016), 297–308 | DOI | MR | Zbl
[15] Stoilov S., Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, In. lit., M., 1964 | MR
[16] Avkhadiev F. G., Wirths K.-J., Schwarz-Pick type inequalities, Birkhäuser, Boston–Berlin–Bern, 2009 | MR | Zbl