$UA$-properties of modules over commutative Noetherian rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup $(R,\cdot)$ is said to be a $UA$-ring if there exists a unique binary operation $+$ transforming $(R,\cdot,+)$ into a ring. An $R$-module $A$ is said to be a $UA$-module if it is not possible to change the addition of $A$ without changing the action of $R$ on $A$. In this paper we investigate topics that are related to the structure of $UA$-rings of endomorphisms and $UA$-modules over commutative Noetherian rings.
Keywords: $UA$-ring, endomorphic module.
Mots-clés : $UA$-module
@article{IVM_2016_11_a3,
     author = {O. V. Lyubimtsev and D. S. Chistyakov},
     title = {$UA$-properties of modules over commutative {Noetherian} rings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--52},
     publisher = {mathdoc},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/}
}
TY  - JOUR
AU  - O. V. Lyubimtsev
AU  - D. S. Chistyakov
TI  - $UA$-properties of modules over commutative Noetherian rings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 42
EP  - 52
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/
LA  - ru
ID  - IVM_2016_11_a3
ER  - 
%0 Journal Article
%A O. V. Lyubimtsev
%A D. S. Chistyakov
%T $UA$-properties of modules over commutative Noetherian rings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 42-52
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/
%G ru
%F IVM_2016_11_a3
O. V. Lyubimtsev; D. S. Chistyakov. $UA$-properties of modules over commutative Noetherian rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 42-52. http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/

[1] Rickart C. E., “One-to-one mappings of rings and lattices”, Bull. Amer. Math. Soc., 54:8 (1948), 758–764 | DOI | MR | Zbl

[2] Martindale W. S. (III), “When are multiplicative mappings additive?”, Proc. Amer. Math. Soc., 21:3 (1969), 695–698 | DOI | MR | Zbl

[3] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 210–214 | MR

[4] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135(177):2 (1988), 210–224 | MR | Zbl

[5] Artamonova I. I., “Ob odnoznachnosti slozheniya v polukoltsakh”, Fundament. i prikl. matem., 3:4 (1997), 1093–1100 | MR | Zbl

[6] Arzhantsev I. V., “Odnoznachnost slozheniya v poluprostykh algebrakh Li”, UMN, 56:3 (2001), 155–156 | DOI | MR | Zbl

[7] Van der Merwe A. B., “Unique addition modules”, Comm. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl

[8] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[9] Lyubimtsev O. V., “Periodicheskie abelevy gruppy s $UA$-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[10] Chistyakov D. S., “Separabelnye moduli bez krucheniya s $UA$-koltsami endomorfizmov”, Izv. vuzov. Matem., 2015, no. 6, 53–59 | MR | Zbl

[11] Albrecht U., Breaz S., Wickless W., “Generalized endoprimal abelian groups”, J. Algebra Appl., 5:1 (2006), 1–17 | DOI | MR | Zbl

[12] Chistyakov D. S., “Odnorodnye otobrazheniya abelevykh grupp”, Izv. vuzov. Matem., 2014, no. 2, 61–68 | Zbl

[13] Krylov P. A., Tuganbaev A. A., Moduli nad oblastyami diskretnogo normirovaniya, Faktorial Press, M., 2007

[14] Tuganbaev A. A., “Distributivnye koltsa i endodistributivnye moduli”, Ukr. matem. zhurn., 38:1 (1986), 63–67 | MR | Zbl

[15] Kaarli K., Márki L., “Endoprimal abelian groups”, J. Aust. Math. Soc. Ser. A, 67:3 (1999), 412–428 | DOI | MR | Zbl

[16] Van der Merwe A. B., “Modules for which homogeneous maps are linear”, Rocky Mountain J. Math., 29:4 (1999), 1521–1530 | DOI | MR | Zbl

[17] Mamford D., Krasnaya kniga o mnogoobraziyakh i skhemakh, MTsNMO, M., 2007