$UA$-properties of modules over commutative Noetherian rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 42-52

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup $(R,\cdot)$ is said to be a $UA$-ring if there exists a unique binary operation $+$ transforming $(R,\cdot,+)$ into a ring. An $R$-module $A$ is said to be a $UA$-module if it is not possible to change the addition of $A$ without changing the action of $R$ on $A$. In this paper we investigate topics that are related to the structure of $UA$-rings of endomorphisms and $UA$-modules over commutative Noetherian rings.
Keywords: $UA$-ring, endomorphic module.
Mots-clés : $UA$-module
@article{IVM_2016_11_a3,
     author = {O. V. Lyubimtsev and D. S. Chistyakov},
     title = {$UA$-properties of modules over commutative {Noetherian} rings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--52},
     publisher = {mathdoc},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/}
}
TY  - JOUR
AU  - O. V. Lyubimtsev
AU  - D. S. Chistyakov
TI  - $UA$-properties of modules over commutative Noetherian rings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 42
EP  - 52
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/
LA  - ru
ID  - IVM_2016_11_a3
ER  - 
%0 Journal Article
%A O. V. Lyubimtsev
%A D. S. Chistyakov
%T $UA$-properties of modules over commutative Noetherian rings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 42-52
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/
%G ru
%F IVM_2016_11_a3
O. V. Lyubimtsev; D. S. Chistyakov. $UA$-properties of modules over commutative Noetherian rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 42-52. http://geodesic.mathdoc.fr/item/IVM_2016_11_a3/