Multivalent guiding function in a~problem on existence of periodic solutions of some classes of differential inclusions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose to use the multivalent guiding function for the study of periodic solutions of some classes of differential inclusions. More precisely, we consider the periodic problem for nonlinear systems described by differential inclusions with both convex right-hand side and with nonconvex right-hand side. The latter include differential inclusions with a regular right-hand side. Note that the class of regular multimaps is wide enough. It includes, for example, bounded almost lower semicontinuous multimaps with compact values.
Keywords: differential inclusion, periodic problem, multivalent guiding function, topological degree.
@article{IVM_2016_11_a1,
     author = {S. V. Kornev},
     title = {Multivalent guiding function in a~problem on existence of periodic solutions of some classes of differential inclusions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--26},
     publisher = {mathdoc},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a1/}
}
TY  - JOUR
AU  - S. V. Kornev
TI  - Multivalent guiding function in a~problem on existence of periodic solutions of some classes of differential inclusions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 14
EP  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_11_a1/
LA  - ru
ID  - IVM_2016_11_a1
ER  - 
%0 Journal Article
%A S. V. Kornev
%T Multivalent guiding function in a~problem on existence of periodic solutions of some classes of differential inclusions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 14-26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_11_a1/
%G ru
%F IVM_2016_11_a1
S. V. Kornev. Multivalent guiding function in a~problem on existence of periodic solutions of some classes of differential inclusions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 14-26. http://geodesic.mathdoc.fr/item/IVM_2016_11_a1/

[1] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[2] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[3] Krasnoselskii M. A., Perov A. I., “Ob odnom printsipe suschestvovaniya ogranichennykh, periodicheskikh i pochti-periodicheskikh reshenii u sistem obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 123:2 (1958), 235–238 | MR

[4] Rachinskii D. I., “Vynuzhdennye kolebaniya v sistemakh upravleniya v usloviyakh, blizkikh k rezonansu”, Avtomatika i telemekhanika, 1995, no. 11, 87–98 | MR | Zbl

[5] Rachinskii D. I., “Multivalent guiding functions in forced oscillation problems”, Nonlinear Anal. Theory, Methods Appl., 26:3 (1996), 631–639 | DOI | MR

[6] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Knizhnyi dom “Librokom”, M., 2011 | MR

[7] Zvyagin V. G., Ratiner N. M., “Orientirovannaya stepen fredgolmovykh otobrazhenii. Metod konechnomernoi reduktsii”, Sovr. matem. Fund. napr., 44, RUDN, M., 2012, 3–171 | MR

[8] Górniewicz L., Topological fixed point theory of multivalued mappings, Springer, Berlin, 2006 | MR | Zbl

[9] Kamenskii M., Obukhovskii V., Zecca P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Walter de Gruyter, Berlin–New York, 2001 | MR

[10] Obukhovskii V., Zecca P., Loi N. V., Kornev S., Method of guiding functions in problems of nonlinear analysis, Lecture Notes in Math., 2076, Springer, Berlin, 2013 | DOI | MR | Zbl

[11] De Blasi F. S., Górniewicz L., Pianigiani G., “Topological degree and periodic solutions of differential inclusions”, Nonlinear Anal. Ser. A: Theory Methods, 37:2 (1999), 217–243 | DOI | MR

[12] Filippakis M., Gasinski L., Papageorgiou N. S., “Nonsmooth generalized guiding functions for periodic differential inclusions”, Nonlin. Differ. Equat. Appl., 13:1 (2006), 43–66 | DOI | MR | Zbl

[13] Kornev S. V., “O metode mnogolistnykh napravlyayuschikh funktsii v zadache o periodicheskikh resheniyakh differentsialnykh vklyuchenii”, Avtomatika i telemekhanika, 2003, no. 3, 72–83 | MR | Zbl

[14] Kornev S. V., Obukhovskii V. V., “O negladkikh mnogolistnykh napravlyayuschikh funktsiyakh”, Differ. uravn., 39:11 (2003), 1497–1502 | MR | Zbl

[15] Kornev S. V., Obukhovskii V. V., “Negladkie napravlyayuschie funktsii v zadachakh o vynuzhdennykh kolebaniyakh”, Avtomatika i telemekhanika, 2007, no. 1, 3–10 | MR | Zbl

[16] Deimling K., Multivalued differential equations, Walter de Gruyter, Berlin–New York, 1992 | MR | Zbl

[17] Fryszkowski A., Fixed point theory for decomposable sets, Kluwer AP, Dordrecht, 2004 | MR | Zbl

[18] Kisielewicz M., Differential inclusions and optimal control, Kluwer, Dordrecht; PWN Polish Scientific Publishers, Warsaw, 1991 | MR | Zbl

[19] Bressan A., Colombo G., “Extensions and selections of maps with decomposable values”, Studia Math., 90:1 (1988), 69–86 | MR | Zbl

[20] Bressan A., “Upper and lower semicontinuous differential inclusions. A unified approach”, Controlability and optimal control, ed. H. Sussmann, Dekker, New York, 1989, 1–31 | MR

[21] Bressan A., “Directionally continuous selections and differential inclusions”, Funkcial. Ekvac., 31:3 (1988), 459–470 | MR | Zbl

[22] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR