On coincidence points for vector mappings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 14-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings acting in the product of metric spaces we propose a concept of vector covering. This concept is a natural extension of the notion of covering for mappings in metric spaces. The statements on the solvability of systems of operator equations are proved for the case when the left-hand side of an equation is a value of a vector covering mapping and the right-hand side is Lipschitzian vector mapping. In the scalar case the obtained statements are equivalent to the coincide point theorems by A. V. Arutyunov. As an application, we prove a statement on the existence of $n$-fold coincidence points and obtain estimates of the points. The sufficient conditions for $n$-fold fixed points existence, including the well-known theorems on double fixed point, follow from the obtained results.
Keywords: system of operator equations, vector covering mappings of metric spaces, coincidence points, $n$-fold fixed points.
@article{IVM_2016_10_a2,
     author = {E. S. Zhukovskiy},
     title = {On coincidence points for vector mappings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--28},
     publisher = {mathdoc},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a2/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - On coincidence points for vector mappings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 14
EP  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_10_a2/
LA  - ru
ID  - IVM_2016_10_a2
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T On coincidence points for vector mappings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 14-28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_10_a2/
%G ru
%F IVM_2016_10_a2
E. S. Zhukovskiy. On coincidence points for vector mappings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 14-28. http://geodesic.mathdoc.fr/item/IVM_2016_10_a2/

[1] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. RAN, 416:2 (2007), 151–155 | MR | Zbl

[2] Arutyunov A. V., “Ustoichivost tochek sovpadeniya i mnogoznachnye nakryvayuschie otobrazheniya v metricheskikh prostranstvakh”, Dokl. RAN, 427:5 (2009), 583–585 | MR | Zbl

[3] Arutyunov A. V., “Tochki sovpadeniya dvukh otobrazhenii”, Funkts. analiz i ego prilozh., 48:1 (2014), 89–93 | DOI | MR | Zbl

[4] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Anal.: Theory, Methods and Appl., 75 (2012), 1026–1044 | DOI | MR | Zbl

[5] Avakov E. R., Arutyunov A. V., Zhukovskii E. S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differents. uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[6] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl

[7] Zhukovskii E. S., Pluzhnikova E. A., “Nakryvayuschie otobrazheniya v proizvedenii metricheskikh prostranstv i kraevye zadachi dlya differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. uravneniya, 49:4 (2013), 439 | MR | Zbl

[8] Arutyunov A. V., Gelman B. D., “O strukture mnozhestva tochek sovpadeniya”, Matem. sbornik, 206:3 (2015), 35–56 | DOI | MR | Zbl

[9] Arutyunov A. V., “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | DOI | MR | Zbl

[10] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, J. Fixed Points Theory and Appl., 5:1 (2009), 105–127 | DOI | MR | Zbl

[11] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[12] Kollats L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[13] S. G. Kreina (obsch. red.), Funktsionalnyi analiz, SMB, M., 1972

[14] Prasolov V. V., Zadachi i teoremy lineinoi algebry, 2-e izd., M., 2008

[15] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR