Inductive and projective limits of Banach spaces of measurable functions with order unites with respect to power parameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a measurable function $f$ is bounded and invertible if and only if there exist at least two equivalent norms by order unit spaces with order units $f^\alpha$ and $f^\beta$ with $\alpha>\beta>0$. We show that it is natural to understand the limit of ordered vector spaces with order units $f^\alpha$ ($\alpha$ approaches to infinity) as a direct sum of one inductive and one projective limits. We also obtain some properties for the corresponding limit topologies.
Keywords: inductive limit, projective limit, initial topology, final topology, order unit space, measurable functions, Banach space, locally convex space.
Mots-clés : Fréchet space
@article{IVM_2016_10_a10,
     author = {A. Novikov and Z. Eskandarian},
     title = {Inductive and projective limits of {Banach} spaces of measurable functions with order unites with respect to power parameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--85},
     publisher = {mathdoc},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a10/}
}
TY  - JOUR
AU  - A. Novikov
AU  - Z. Eskandarian
TI  - Inductive and projective limits of Banach spaces of measurable functions with order unites with respect to power parameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 80
EP  - 85
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_10_a10/
LA  - ru
ID  - IVM_2016_10_a10
ER  - 
%0 Journal Article
%A A. Novikov
%A Z. Eskandarian
%T Inductive and projective limits of Banach spaces of measurable functions with order unites with respect to power parameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 80-85
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_10_a10/
%G ru
%F IVM_2016_10_a10
A. Novikov; Z. Eskandarian. Inductive and projective limits of Banach spaces of measurable functions with order unites with respect to power parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2016_10_a10/

[1] Novikov An. An., “$L_1$-prostranstva, assotsiirovannye s polozhitelnymi operatorami, prisoedinennymi k algebre fon Neimana”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 50, 2014, 133–134

[2] Novikov An. An., Tikhonov O. E., “Prostranstva tipa $L_1$, assotsiirovannye s polozhitelnymi operatorami”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 46, 2013, 336–337

[3] Asimow L., Ellis A. J., Convexity theory and its applications in functional analysis, Academic Press, London, 1980 | MR | Zbl

[4] Novikov An., “$L_1$-space for a positive operator affiliated with von Neumann algebra”, Positivity, 2016 | DOI

[5] Chiţescu I., “Köthe spaces that are Banach algebras with unit”, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 18(66):3/4 (1976), 269–271 | MR | Zbl

[6] Dubinsky E., “Projective and inductive limits of Banach spaces”, Stud. Math., 42 (1972), 259–263 | MR | Zbl

[7] Floret K., “On bounded sets in inductive limits of normed spaces”, Proc. of AMS, 75:2 (1979), 221–225 | DOI | MR | Zbl

[8] Valdivia M., “On inductive limits of Banach spaces”, Manuscripta Math., 15 (1975), 153–163 | DOI | MR | Zbl

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR