Conformal mappings onto Einstein spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 8-13
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we study conformal mappings of Riemannian manifolds onto an Einstein manifold for the minimal condition on the differentiability class of these manifolds. We show for which conditions the corresponding equations obtained by J. Mikeš, M. L. Gavril'chenko and E. I. Gladyscheva, which defined these mappings, are linear. We obtain the number of necessary parameters on which depends the general solution of fundamental system of equations.
Keywords:
(pseudo-)Riemannian space, conformal mapping, Einstein space.
@article{IVM_2016_10_a1,
author = {L. E. Evtushik and I. Hinterleitner and N. I. Guseva and J. Mike\v{s}},
title = {Conformal mappings onto {Einstein} spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {8--13},
publisher = {mathdoc},
number = {10},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/}
}
TY - JOUR AU - L. E. Evtushik AU - I. Hinterleitner AU - N. I. Guseva AU - J. Mikeš TI - Conformal mappings onto Einstein spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 8 EP - 13 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/ LA - ru ID - IVM_2016_10_a1 ER -
L. E. Evtushik; I. Hinterleitner; N. I. Guseva; J. Mikeš. Conformal mappings onto Einstein spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 8-13. http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/