Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_10_a1, author = {L. E. Evtushik and I. Hinterleitner and N. I. Guseva and J. Mike\v{s}}, title = {Conformal mappings onto {Einstein} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--13}, publisher = {mathdoc}, number = {10}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/} }
TY - JOUR AU - L. E. Evtushik AU - I. Hinterleitner AU - N. I. Guseva AU - J. Mikeš TI - Conformal mappings onto Einstein spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 8 EP - 13 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/ LA - ru ID - IVM_2016_10_a1 ER -
L. E. Evtushik; I. Hinterleitner; N. I. Guseva; J. Mikeš. Conformal mappings onto Einstein spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 8-13. http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/
[1] Eizenkhart L. P., Rimanova geometriya, In. lit., M., 1948
[2] Petrov A. Z., Novye metody v teorii otnositelnosti, Nauka, M., 1965
[3] Skhouten I. A., Stroik D. Dzh., Vvedenie v novye metody differentsialnoi geometrii, v. I, Gostekhizdat, M.–L., 1939
[4] Skhouten I. A., Stroik D. Dzh., Vvedenie v novye metody differentsiyaalnoi geometrii, v. II, Gostekhizdat, In. lit., M., 1949
[5] Denisov V. I., “Spetsialnye konformnye otobrazheniya v obschei teorii otnositelnosti”, Ukr. geometrich. sb., 28 (1985), 43–50 | MR | Zbl
[6] Brinkmann H. W., “Einstein spaces which mapped conformally on each other”, Math. Ann., 94 (1925), 117–145 | DOI | MR
[7] Mikesh I., Gavrilchenko M. L., Gladysheva E. I., “O konformnykh otobrazheniyakh na prostranstva Einshteina”, Vestn. Mosk. un-ta, 1994, no. 3, 13–17 | MR | Zbl
[8] Mikesh I., Gavrilchenko M. L., Gladysheva E. I., “O konformnykh otobrazheniyakh na prostranstva Einshteina”, Mezhdunarodn. nauchn. konf. “Lobachevskii i sovremennaya geometriya”, Tez. dokl. Ch. I (Kazan, 18–22 avgusta 1992 g.), Kazansk. un-t, 1992, 64
[9] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci. (New York), 89:3 (1998), 1334–1353 | DOI | MR | Zbl
[10] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic mappings and some generalizations, Palacky University Press, Olomouc, 2009 | MR | Zbl
[11] Evtushik L. E., Kiosak V. A., Mikesh I., “O mobilnosti rimanovykh prostranstv otnositelno konformnykh otobrazhenii na prostranstva Einshteina”, Izv. vuzov. Matem., 2010, no. 8, 36–41 | MR | Zbl
[12] Gover A. R., Nurowski P., “Obstructions to conformally Einstein metrics in $n$ dimensions”, J. Geom. Phys., 56:3 (2006), 450–484 | DOI | MR | Zbl
[13] Hammerl M., Somberg P., Souček V., Šilhan J., “Invariant prolongation of overdetermined PDEs in projective, conformal, and Grassmannian geometry”, Ann. Global Anal. Geom., 42:1 (2012), 121–145 | DOI | MR | Zbl
[14] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR
[15] Yano K., Bochner S., Curvature and Betti numbers, Princeton Univ. Press, 1953 | MR | Zbl
[16] Hinterleitner I., Mikeš J., “Geodesic mappings and Einstein spaces”, Geom. Methods in Phys., Birkhauser, Basel, 2013, 331–335 ; 2012, arXiv: 1201.2827v1[math.DG] | DOI | MR | Zbl
[17] Hinterleitner I., Mikeš J., “On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds”, Arch. Math. (Brno), 49:5 (2013), 295–302 | DOI | MR | Zbl