Conformal mappings onto Einstein spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 8-13

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we study conformal mappings of Riemannian manifolds onto an Einstein manifold for the minimal condition on the differentiability class of these manifolds. We show for which conditions the corresponding equations obtained by J. Mikeš, M. L. Gavril'chenko and E. I. Gladyscheva, which defined these mappings, are linear. We obtain the number of necessary parameters on which depends the general solution of fundamental system of equations.
Keywords: (pseudo-)Riemannian space, conformal mapping, Einstein space.
@article{IVM_2016_10_a1,
     author = {L. E. Evtushik and I. Hinterleitner and N. I. Guseva and J. Mike\v{s}},
     title = {Conformal mappings onto {Einstein} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--13},
     publisher = {mathdoc},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/}
}
TY  - JOUR
AU  - L. E. Evtushik
AU  - I. Hinterleitner
AU  - N. I. Guseva
AU  - J. Mikeš
TI  - Conformal mappings onto Einstein spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 8
EP  - 13
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/
LA  - ru
ID  - IVM_2016_10_a1
ER  - 
%0 Journal Article
%A L. E. Evtushik
%A I. Hinterleitner
%A N. I. Guseva
%A J. Mikeš
%T Conformal mappings onto Einstein spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 8-13
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/
%G ru
%F IVM_2016_10_a1
L. E. Evtushik; I. Hinterleitner; N. I. Guseva; J. Mikeš. Conformal mappings onto Einstein spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 8-13. http://geodesic.mathdoc.fr/item/IVM_2016_10_a1/