Structure of dendrites admitting an existence of arc horseshoe
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that a dendrite $X$ admits an existence of an arc horseshoe if for any continuous map $f$ of $X$ into itself which has a horseshoe $(A,B)$ one can find a natural number $n$ such that $n$-th iteration of $f$ has an arc horseshoe. We investigate the structure of dendrites admitting the existence of an arc horseshoe.
Mots-clés : dendrite
Keywords: horseshoe, arc horseshoe.
@article{IVM_2015_8_a5,
     author = {E. N. Makhrova},
     title = {Structure of dendrites admitting an existence of arc horseshoe},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--74},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_8_a5/}
}
TY  - JOUR
AU  - E. N. Makhrova
TI  - Structure of dendrites admitting an existence of arc horseshoe
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 64
EP  - 74
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_8_a5/
LA  - ru
ID  - IVM_2015_8_a5
ER  - 
%0 Journal Article
%A E. N. Makhrova
%T Structure of dendrites admitting an existence of arc horseshoe
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 64-74
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_8_a5/
%G ru
%F IVM_2015_8_a5
E. N. Makhrova. Structure of dendrites admitting an existence of arc horseshoe. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 64-74. http://geodesic.mathdoc.fr/item/IVM_2015_8_a5/

[1] Block A., Teoh E., “How little is little enough”, Discrete Contin. Dyn. Syst., 9:4 (2003), 969–978 | DOI | MR

[2] Libre J., Misiurewicz M., “Horseshoes, entropy and periods for graph maps”, Topology, 32 (1993), 649–664 | DOI | MR

[3] Makhrova E. N., “Homoclinic points and topological entropy of a continuous mapping of a dendrite”, J. Math. Sci., 158:2 (2009), 241–248 | DOI | MR | Zbl

[4] Kocan Zd., Korneka-Kurkova V., Malek M., “Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites”, Ergodic theory Dynam. Sys., 31:1 (2011), 165–175 | DOI | MR | Zbl

[5] Efremova L. S., Makhrova E. N., “Dinamika monotonnykh otobrazhenii dendritov”, Matem. sb., 192:6 (2001), 15–30 | DOI | MR | Zbl

[6] Arévalo D., Charatonic W. J., Covarrubias P. P., Simón L., “Dendrites with a closed set of end points”, Topology Appl., 115 (2001), 1–17 | DOI | MR | Zbl

[7] Paitgen Kh. O., Rikhter P. Ch., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993

[8] Agronsky S. J., Ceder J. G., “What sets can be $\omega$-limit sets in $E^n$”, Real Anal. Exchange, 17 (1991/1992), 97–109 | MR

[9] Balibrea F., García-Guirao J. L., “Continua with empty interior as $\omega$-limit sets”, Appl. General Topology, 6 (2005), 195–205 | MR | Zbl

[10] Nadler S., Continuum theory, Marcel Dekker, N.Y., 1992 | MR | Zbl

[11] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR

[12] Zafiridou S., “Classification of dendrites with a countable set of end points”, Topology Appl., 159 (2012), 1661–1669 | DOI | MR | Zbl

[13] Makhrova E. N., “Suschestvovanie lineinoi podkovy nepreryvnykh otobrazhenii dendritov”, Izv. vuzov. Matem., 2013, no. 3, 40–46 | MR | Zbl

[14] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR