Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_8_a5, author = {E. N. Makhrova}, title = {Structure of dendrites admitting an existence of arc horseshoe}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {64--74}, publisher = {mathdoc}, number = {8}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_8_a5/} }
E. N. Makhrova. Structure of dendrites admitting an existence of arc horseshoe. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 64-74. http://geodesic.mathdoc.fr/item/IVM_2015_8_a5/
[1] Block A., Teoh E., “How little is little enough”, Discrete Contin. Dyn. Syst., 9:4 (2003), 969–978 | DOI | MR
[2] Libre J., Misiurewicz M., “Horseshoes, entropy and periods for graph maps”, Topology, 32 (1993), 649–664 | DOI | MR
[3] Makhrova E. N., “Homoclinic points and topological entropy of a continuous mapping of a dendrite”, J. Math. Sci., 158:2 (2009), 241–248 | DOI | MR | Zbl
[4] Kocan Zd., Korneka-Kurkova V., Malek M., “Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites”, Ergodic theory Dynam. Sys., 31:1 (2011), 165–175 | DOI | MR | Zbl
[5] Efremova L. S., Makhrova E. N., “Dinamika monotonnykh otobrazhenii dendritov”, Matem. sb., 192:6 (2001), 15–30 | DOI | MR | Zbl
[6] Arévalo D., Charatonic W. J., Covarrubias P. P., Simón L., “Dendrites with a closed set of end points”, Topology Appl., 115 (2001), 1–17 | DOI | MR | Zbl
[7] Paitgen Kh. O., Rikhter P. Ch., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993
[8] Agronsky S. J., Ceder J. G., “What sets can be $\omega$-limit sets in $E^n$”, Real Anal. Exchange, 17 (1991/1992), 97–109 | MR
[9] Balibrea F., García-Guirao J. L., “Continua with empty interior as $\omega$-limit sets”, Appl. General Topology, 6 (2005), 195–205 | MR | Zbl
[10] Nadler S., Continuum theory, Marcel Dekker, N.Y., 1992 | MR | Zbl
[11] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR
[12] Zafiridou S., “Classification of dendrites with a countable set of end points”, Topology Appl., 159 (2012), 1661–1669 | DOI | MR | Zbl
[13] Makhrova E. N., “Suschestvovanie lineinoi podkovy nepreryvnykh otobrazhenii dendritov”, Izv. vuzov. Matem., 2013, no. 3, 40–46 | MR | Zbl
[14] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR