Residual properties of automorphisms groups and split extensions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a group $G$ satisfy condition A: for every positive integer $n$ the number of all subgroups of the group $G$ of index $n$ is finite. We prove that if $G$ is virtually residually finite $p$-group for some prime $p$, then the automorphism group of the group $G$ is virtually residually finite $p$-group. A similar result is obtained for a split extension of the group $G$ by virtually residually finite $p$-group. Moreover, we prove that if the group $G$ is a virtually residually finite nilpotent $\pi$-group for some finite set $\pi$ of primes, then the automorphism group of the group $G$ and the split extension of the group $G$ by a virtually residually finite nilpotent $\pi$-group are virtually residually finite nilpotent $\pi$-groups.
Keywords: linear group, virtually residually finite $p$-group.
Mots-clés : automorphism group
@article{IVM_2015_8_a0,
     author = {D. N. Azarov},
     title = {Residual properties of automorphisms groups and split extensions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_8_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Residual properties of automorphisms groups and split extensions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_8_a0/
LA  - ru
ID  - IVM_2015_8_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Residual properties of automorphisms groups and split extensions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_8_a0/
%G ru
%F IVM_2015_8_a0
D. N. Azarov. Residual properties of automorphisms groups and split extensions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2015_8_a0/

[1] Maltsev A. I., “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Matem. sb., 8(50):3 (1940), 405–422 | MR | Zbl

[2] Maltsev A. I., “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25(67):3 (1949), 347–366 | MR | Zbl

[3] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR

[4] Learner A., “Residual properties of polycyclic groups”, J. Math., 8 (1964), 536–542 | MR | Zbl

[5] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivanovsk. ped. in-ta, 18:5 (1958), 49–60

[6] Smirnov D. M., “K teorii finitno approksimiruemykh grupp”, Ukr. matem. zhurn., 15 (1963), 453–457 | Zbl

[7] Baumslag G., “Automorphism groups of residually finite groups”, J. London Math. Soc., 38 (1963), 117–118 | DOI | MR | Zbl

[8] Lubotzky A., “Normal automorphisms of free groups”, J. Algebra, 63 (1980), 494–498 | DOI | MR | Zbl

[9] Shmelkin A. L., “Politsiklicheskie gruppy”, Sib. matem. zhurn., 9 (1968), 234–235 | Zbl

[10] Merzlyakov Yu. I., “Tselochislennoe predstavlenie golomorfov politsiklicheskikh grupp”, Algebra i logika, 9:5 (1980), 539–558

[11] Lubotzky A., “A group-theoretic characterization of linear groups”, J. Algebra, 113 (1988), 207–214 | DOI | MR | Zbl

[12] Platonov V. P., “Nekotorye problemy dlya konechno porozhdennykh grupp”, DAN BSSR, 12 (1968), 492–494 | MR | Zbl

[13] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl

[14] Paris L., Residual $p$-properties of mapping class groups and surface groups, 2007, arXiv: math.GR/0703703v1 | MR

[15] Formanek E., Procesi C., “The automorphism group of a free group is not linear”, J. Algebra, 149:2 (1992), 494–499 | DOI | MR | Zbl

[16] Plotkin B. I., Gruppy avtomorfizmov algebraicheskikh sistem, Nauka, M., 1966 | MR