Residual properties of automorphisms groups and split extensions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 3-13
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a group $G$ satisfy condition A: for every positive integer $n$ the number of all subgroups of the group $G$ of index $n$ is finite. We prove that if $G$ is virtually residually finite $p$-group for some prime $p$, then the automorphism group of the group $G$ is virtually residually finite $p$-group. A similar result is obtained for a split extension of the group $G$ by virtually residually finite $p$-group. Moreover, we prove that if the group $G$ is a virtually residually finite nilpotent $\pi$-group for some finite set $\pi$ of primes, then the automorphism group of the group $G$ and the split extension of the group $G$ by a virtually residually finite nilpotent $\pi$-group are virtually residually finite nilpotent $\pi$-groups.
Keywords:
linear group, virtually residually finite $p$-group.
Mots-clés : automorphism group
Mots-clés : automorphism group
@article{IVM_2015_8_a0,
author = {D. N. Azarov},
title = {Residual properties of automorphisms groups and split extensions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--13},
publisher = {mathdoc},
number = {8},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_8_a0/}
}
D. N. Azarov. Residual properties of automorphisms groups and split extensions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2015_8_a0/