On boundedness of pseudodifferential operators in H\"older--Zygmund spaces with variable order of smoothness
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 82-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Hölder–Zygmund spaces of functions with variable index of smoothness defined on finite-dimensional real space. The index of smoothness depends on a point in this space and may take negative values. We prove the boundedness theorem for pseudodifferential operators with exotic symbols the from Hörmander classes in these spaces.
Keywords: pseudodifferential operators, Hölder–Zygmund spaces, variable index of smoothness.
@article{IVM_2015_6_a9,
     author = {G. P. Omarova},
     title = {On boundedness of pseudodifferential operators in {H\"older--Zygmund} spaces with variable order of smoothness},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--85},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/}
}
TY  - JOUR
AU  - G. P. Omarova
TI  - On boundedness of pseudodifferential operators in H\"older--Zygmund spaces with variable order of smoothness
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 82
EP  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/
LA  - ru
ID  - IVM_2015_6_a9
ER  - 
%0 Journal Article
%A G. P. Omarova
%T On boundedness of pseudodifferential operators in H\"older--Zygmund spaces with variable order of smoothness
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 82-85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/
%G ru
%F IVM_2015_6_a9
G. P. Omarova. On boundedness of pseudodifferential operators in H\"older--Zygmund spaces with variable order of smoothness. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 82-85. http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/

[1] Khermander L., “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Sb. statei, Mir, M., 1967, 297–366 | MR

[2] Beals R., “$L_p$ and Hölder estimates for pseudodifferential operators: sufficient conditions”, Ann. Inst. Fourier, 29:3 (1979), 239–260 | DOI | MR | Zbl

[3] Kryakvin V. D., “Ob ogranichennosti i neterovosti psevdodifferentsialnykh operatorov v vesovykh prostranstvakh Gëldera”, Izv. vuzov. Matem., 1983, no. 12, 71–73 | MR | Zbl

[4] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993 | MR | Zbl

[5] Taylor M. E., Tools for PDE, Pseudodifferential operators, paradifferential operators, and layer potentials, Mathematical Surveys and Monographs, 81, AMS, 2000 | MR | Zbl

[6] Rabinovich V. S., “Fredholm property of pseudo-differential operators on weighted Hölder–Zygmund spaces”, Operator Theory: Advances and Appl., 164 (2006), 95–114 | DOI | MR | Zbl

[7] Yan Lin, Shan Zhen Lu, “Pseudo-differential operators on Sobolev and Lipschitz spaces”, Acta Math. Sinica. English Series, 26:1 (2010), 131–142 | DOI | MR | Zbl

[8] Kryakvin V. D., “Ob ogranichennosti psevdodifferentsialnykh operatorov v prostranstvakh Gëldera–Zigmunda peremennogo poryadka”, Sib. matem. zhurn., 55:6 (2014), 1315–1327

[9] Kryakvin V. D., “Obschaya kraevaya zadacha dlya oblasti s nekompaktnoi granitsei v prostranstvakh Gëldera s vesom”, Izv. vuzov. Matem., 1989, no. 1, 51–60 | MR | Zbl

[10] Krylov N. V., Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, AMS, 1996 | DOI | MR | Zbl

[11] Konenkov A. N., “Kraevye zadachi dlya parabolicheskikh uravnenii v prostranstvakh Zigmunda”, Dokl. RAN, 418:1 (2008), 15–18 | MR | Zbl

[12] Kryakvin V. D., Omarova G. P., “Ob ogranichennosti psevdodifferentsialnykh operatorov v prostranstvakh Gëldera–Zigmunda”, Ekologicheskii vestnik nauchnykh tsentrov Chernomorsk. ekonom. sotrudnichestva, 2011, no. 4, 45–48