Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_6_a9, author = {G. P. Omarova}, title = {On boundedness of pseudodifferential operators in {H\"older--Zygmund} spaces with variable order of smoothness}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {82--85}, publisher = {mathdoc}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/} }
TY - JOUR AU - G. P. Omarova TI - On boundedness of pseudodifferential operators in H\"older--Zygmund spaces with variable order of smoothness JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 82 EP - 85 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/ LA - ru ID - IVM_2015_6_a9 ER -
%0 Journal Article %A G. P. Omarova %T On boundedness of pseudodifferential operators in H\"older--Zygmund spaces with variable order of smoothness %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 82-85 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/ %G ru %F IVM_2015_6_a9
G. P. Omarova. On boundedness of pseudodifferential operators in H\"older--Zygmund spaces with variable order of smoothness. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 82-85. http://geodesic.mathdoc.fr/item/IVM_2015_6_a9/
[1] Khermander L., “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Sb. statei, Mir, M., 1967, 297–366 | MR
[2] Beals R., “$L_p$ and Hölder estimates for pseudodifferential operators: sufficient conditions”, Ann. Inst. Fourier, 29:3 (1979), 239–260 | DOI | MR | Zbl
[3] Kryakvin V. D., “Ob ogranichennosti i neterovosti psevdodifferentsialnykh operatorov v vesovykh prostranstvakh Gëldera”, Izv. vuzov. Matem., 1983, no. 12, 71–73 | MR | Zbl
[4] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993 | MR | Zbl
[5] Taylor M. E., Tools for PDE, Pseudodifferential operators, paradifferential operators, and layer potentials, Mathematical Surveys and Monographs, 81, AMS, 2000 | MR | Zbl
[6] Rabinovich V. S., “Fredholm property of pseudo-differential operators on weighted Hölder–Zygmund spaces”, Operator Theory: Advances and Appl., 164 (2006), 95–114 | DOI | MR | Zbl
[7] Yan Lin, Shan Zhen Lu, “Pseudo-differential operators on Sobolev and Lipschitz spaces”, Acta Math. Sinica. English Series, 26:1 (2010), 131–142 | DOI | MR | Zbl
[8] Kryakvin V. D., “Ob ogranichennosti psevdodifferentsialnykh operatorov v prostranstvakh Gëldera–Zigmunda peremennogo poryadka”, Sib. matem. zhurn., 55:6 (2014), 1315–1327
[9] Kryakvin V. D., “Obschaya kraevaya zadacha dlya oblasti s nekompaktnoi granitsei v prostranstvakh Gëldera s vesom”, Izv. vuzov. Matem., 1989, no. 1, 51–60 | MR | Zbl
[10] Krylov N. V., Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, AMS, 1996 | DOI | MR | Zbl
[11] Konenkov A. N., “Kraevye zadachi dlya parabolicheskikh uravnenii v prostranstvakh Zigmunda”, Dokl. RAN, 418:1 (2008), 15–18 | MR | Zbl
[12] Kryakvin V. D., Omarova G. P., “Ob ogranichennosti psevdodifferentsialnykh operatorov v prostranstvakh Gëldera–Zigmunda”, Ekologicheskii vestnik nauchnykh tsentrov Chernomorsk. ekonom. sotrudnichestva, 2011, no. 4, 45–48