The structure of $C^*$-subalgebras of the Toeplitz algebra fixed with respect to a~finite group of automorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 14-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the $C^*$-subalgebras of the Toeplitz algebra $\mathcal T$, each element of which is fixed relative to finite subgroup of automorphisms of the algebra $\mathcal T$. We prove that such subalgebras have a finite family of unitarily equivalent irreducible representations.
Mots-clés : index of monomial
Keywords: Toeplitz algebra, irreducible representation, $C^*$-algebra, bicyclic semigroup.
@article{IVM_2015_6_a2,
     author = {E. V. Lipacheva and K. G. Ovsepyan},
     title = {The structure of $C^*$-subalgebras of the {Toeplitz} algebra fixed with respect to a~finite group of automorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--23},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a2/}
}
TY  - JOUR
AU  - E. V. Lipacheva
AU  - K. G. Ovsepyan
TI  - The structure of $C^*$-subalgebras of the Toeplitz algebra fixed with respect to a~finite group of automorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 14
EP  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_6_a2/
LA  - ru
ID  - IVM_2015_6_a2
ER  - 
%0 Journal Article
%A E. V. Lipacheva
%A K. G. Ovsepyan
%T The structure of $C^*$-subalgebras of the Toeplitz algebra fixed with respect to a~finite group of automorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 14-23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_6_a2/
%G ru
%F IVM_2015_6_a2
E. V. Lipacheva; K. G. Ovsepyan. The structure of $C^*$-subalgebras of the Toeplitz algebra fixed with respect to a~finite group of automorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 14-23. http://geodesic.mathdoc.fr/item/IVM_2015_6_a2/

[1] Arzumanyan V. A., “Irreducible realizations of isometric”, Diff. Equat. and Funct. Anal., In memory of Prof. Alexandrian, Yerevan State University, Yerevan, 1993, 227–231

[2] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl

[3] Aukhadiev M. A., Tepoyan V. H., “Isometric representations of totally ordered semigroups”, Lobachevskii J. Math., 33:3 (2012), 239–243 | DOI | MR | Zbl

[4] Tepoyan V. H., “On isometric representations of the semigroup $\mathcal Z_+\setminus1$”, J. Cont. Math. An., 48:2 (2013), 78–84 | MR | Zbl

[5] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Kompaktnaya kvantovaya polugruppa, porozhdennaya izometriei”, Izv. vuzov. Matem., 2011, no. 10, 89–93 | MR | Zbl

[6] Aukhadiev M. A., Grigorian S. A., Lipacheva E. V., “Infinite-dimensional compact quantum semigroup”, Lobachevskii J. Math., 32:4 (2010), 304–316 | DOI | MR

[7] Grigoryan S. A., Salakhutdinov A. F., “$C^*$-algebry, porozhdennye polugruppami s sokrascheniem”, Sib. matem. zhurn., 51:1 (2010), 16–25 | MR | Zbl

[8] Davidson K. R., $C^*$-algebras by example, Fields Institute Monograph, 6, AMS, 1996 | MR