Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 49-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of a geometrically nonlinear, physically linear boundary-value problems for elastic shallow homogeneous isotropic shells with pivotally supported edges in the framework of S. P. Timoshenko's shear model. The purpose of work is the proof of the theorem on existence of solutions. Research method consists in reducing the original system of equilibrium equations to one nonlinear differential equation for the deflection. The method is based on integral representations for displacements, which are built with the help of the general solutions of the nonhomogeneous Cauchy–Riemann equation. The solvability of equation relative to deflection is established with the use of principle of contraction mappings.
Mots-clés : Timoshenko type shell, Sobolev spaces
Keywords: equilibrium equations system, boundary-value problem, generalized shifts, generalized problem solution, integral images, operator, integral equations, holomorphic functions existence theorem.
@article{IVM_2015_5_a5,
     author = {S. N. Timergaliev and A. N. Uglov and L. S. Kharasova},
     title = {Solvability of geometrically nonlinear boundary-value problems for shallow shells of {Timoshenko} type with pivotally supported edges},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--61},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/}
}
TY  - JOUR
AU  - S. N. Timergaliev
AU  - A. N. Uglov
AU  - L. S. Kharasova
TI  - Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 49
EP  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/
LA  - ru
ID  - IVM_2015_5_a5
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%A A. N. Uglov
%A L. S. Kharasova
%T Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 49-61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/
%G ru
%F IVM_2015_5_a5
S. N. Timergaliev; A. N. Uglov; L. S. Kharasova. Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 49-61. http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR

[2] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matem., 1985, no. 10, 17–30 | MR | Zbl

[3] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1196–1203 | MR

[4] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 2011

[5] Paimushin V. N., “Problems of geometric nonlinearity and stability in the mechanics of thin shells and rectilinear rods”, J. Appl. Math. Mech., 71:5 (2007), 772–805 | DOI | MR

[6] Paimushin V. N., Ivanov V. A., Bodrov S. N., Polyakova T. V., “Stability problem of a circular sandwich ring under uniform external pressure”, Mech. Composite Materials, 36:3 (2000), 185–192 | DOI

[7] Paimushin V. N., “The theory of thin shells uner finite displacements and deformations based on a modified Kirchhoff–Love model”, J. Appl. Math. Mech., 75:5 (2011), 568–579 | DOI | MR

[8] Badriev I. B., Banderov V. V., Zadvornov O. A., “On the equilibrium problem of a soft network shell in the presence of several point loads”, Appl. Mech. Materials, 392 (2013), 188–190 | DOI

[9] Timergaliev S. N., “O razreshimosti geometricheski nelineinykh kraevykh zadach dlya anizotropnykh obolochek tipa Timoshenko s zhestko zadelannymi krayami”, Izv. vuzov. Matem., 2011, no. 8, 56–68 | MR | Zbl

[10] Timergaliev S. N., “Dokazatelstvo suschestvovaniya resheniya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi nelineinoi teorii pologikh obolochek tipa Timoshenko”, Differents. uravneniya, 48:3 (2012), 450–454 | MR | Zbl

[11] Timergaliev S. N., “O suschestvovanii reshenii geometricheski nelineinykh zadach dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2014, no. 3, 40–56 | MR | Zbl

[12] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975 | MR

[13] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR

[14] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963 | MR

[15] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR