Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_5_a5, author = {S. N. Timergaliev and A. N. Uglov and L. S. Kharasova}, title = {Solvability of geometrically nonlinear boundary-value problems for shallow shells of {Timoshenko} type with pivotally supported edges}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {49--61}, publisher = {mathdoc}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/} }
TY - JOUR AU - S. N. Timergaliev AU - A. N. Uglov AU - L. S. Kharasova TI - Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 49 EP - 61 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/ LA - ru ID - IVM_2015_5_a5 ER -
%0 Journal Article %A S. N. Timergaliev %A A. N. Uglov %A L. S. Kharasova %T Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 49-61 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/ %G ru %F IVM_2015_5_a5
S. N. Timergaliev; A. N. Uglov; L. S. Kharasova. Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 49-61. http://geodesic.mathdoc.fr/item/IVM_2015_5_a5/
[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR
[2] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matem., 1985, no. 10, 17–30 | MR | Zbl
[3] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1196–1203 | MR
[4] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 2011
[5] Paimushin V. N., “Problems of geometric nonlinearity and stability in the mechanics of thin shells and rectilinear rods”, J. Appl. Math. Mech., 71:5 (2007), 772–805 | DOI | MR
[6] Paimushin V. N., Ivanov V. A., Bodrov S. N., Polyakova T. V., “Stability problem of a circular sandwich ring under uniform external pressure”, Mech. Composite Materials, 36:3 (2000), 185–192 | DOI
[7] Paimushin V. N., “The theory of thin shells uner finite displacements and deformations based on a modified Kirchhoff–Love model”, J. Appl. Math. Mech., 75:5 (2011), 568–579 | DOI | MR
[8] Badriev I. B., Banderov V. V., Zadvornov O. A., “On the equilibrium problem of a soft network shell in the presence of several point loads”, Appl. Mech. Materials, 392 (2013), 188–190 | DOI
[9] Timergaliev S. N., “O razreshimosti geometricheski nelineinykh kraevykh zadach dlya anizotropnykh obolochek tipa Timoshenko s zhestko zadelannymi krayami”, Izv. vuzov. Matem., 2011, no. 8, 56–68 | MR | Zbl
[10] Timergaliev S. N., “Dokazatelstvo suschestvovaniya resheniya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi nelineinoi teorii pologikh obolochek tipa Timoshenko”, Differents. uravneniya, 48:3 (2012), 450–454 | MR | Zbl
[11] Timergaliev S. N., “O suschestvovanii reshenii geometricheski nelineinykh zadach dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2014, no. 3, 40–56 | MR | Zbl
[12] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975 | MR
[13] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR
[14] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963 | MR
[15] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR