Sequences of non-uniqueness for weight spaces of holomorphic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 75-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of description of zero subsequences (non-uniqueness sequences) for weight spaces of holomorphic functions under some general scheme are reduced to solving certain problems in weight classes of subharmonic functions. We affect also geometrical questions and completeness of exponential systems.
Keywords: holomorphy, zero subseqence, non-uniqueness sequence, subharmonic function, exponential system, $\rho$-convex completability, geometric difference, full sweeping-out.
@article{IVM_2015_4_a8,
     author = {B. N. Khabibullin},
     title = {Sequences of non-uniqueness for weight spaces of holomorphic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--84},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_4_a8/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Sequences of non-uniqueness for weight spaces of holomorphic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 75
EP  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_4_a8/
LA  - ru
ID  - IVM_2015_4_a8
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Sequences of non-uniqueness for weight spaces of holomorphic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 75-84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_4_a8/
%G ru
%F IVM_2015_4_a8
B. N. Khabibullin. Sequences of non-uniqueness for weight spaces of holomorphic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 75-84. http://geodesic.mathdoc.fr/item/IVM_2015_4_a8/

[1] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, 4-e dop. izdanie, RITs BashGU, Ufa, 2012

[2] Ransford Th., Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[3] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Ser. matem., 65:5 (2001), 167–190 | DOI | MR | Zbl

[4] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Fizmatgiz, M., 1956

[5] Levin B. Ya., Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[6] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, 3-e dop. izdanie, Fizmatlit, M., 1979 | MR | Zbl

[7] Maergoiz L. S., Asimptoticheskie kharakteristiki tselykh funktsii i ikh prilozheniya, Nauka, Novosibirsk, 1991

[8] Abanin A. V., Slabo dostatochnye mnozhestva i absolyutno predstavlyayuschie sistemy, Diss. $\dots$ dokt. fiz.-matem. nauk, RGU, Rostov-na-Donu, 1995

[9] Korobeinik Yu. F., Leontev A. F., “O svoistve vnutr-prodolzhaemosti predstavlyayuschikh sistem eksponent”, Matem. zametki, 28:2 (1980), 243–254 | MR | Zbl

[10] Gusyatnikov P. B., Nikolskii M. S., “Ob optimalnosti vremeni presledovaniya”, DAN SSSR, 184:3 (1969), 518–521 | MR | Zbl

[11] Gusyatnikov P. B., Nikolskii M. S., “K probleme optimalnosti vremeni presledovaniya”, Tr. semin. “Teoriya optimalnykh reshenii”, 3, In-t kibernetiki AN USSR, Kiev, 1969, 3–21

[12] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[13] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[14] Petrov N. N., Vvedenie v vypuklyi analiz, Udmurtsk. gos. un-t, Izhevsk, 2009

[15] Kumkov S. S., Osobennosti mnozhestv urovnya funktsii tseny v lineinykh differentsialnykh igrakh, Diss. $\dots$ kand. fiz.-matem. nauk, UrGU, Ekaterinburg, 2007

[16] Avvakumov S. N., Kiselev Yu. N., “Opornye funktsii nekotorykh spetsialnykh mnozhestv, konstruktivnye protsedury sglazhivaniya, geometricheskaya raznost”, Problemy dinamicheskogo upravleniya, 1, MAKS Press, M., 2005, 24–110 elektron. versiya: http://oc.cs.msu.su/download/76/kiselev05.pdf | MR

[17] Rumyantseva A. A., Asimptotika $\delta$-subgarmonicheskikh funktsii i ikh assotsiirovannykh mer. Primenenie v voprosakh polnoty sistem eksponent, Avtoreferat diss. $\dots$ kand. fiz.-matem. nauk, In-t matem. s VTs UNTs RAN, Ufa, 2010

[18] Rumyantseva A. A., “O polnote sistem eksponent v prostranstve funktsii, analiticheskikh v vypukloi oblasti”, Materialy mezhdunarodn. konf. “Sovremennye problemy matematiki, mekhaniki i ikh prilozhenii”, posvyasch. 70-letiyu rektora MGU Sadovnichego V. A. (Ufa, iyun 2009), Izd-vo In-ta matem. s VTs UNTs RAN, 2009, 92

[19] Makhota (Rumyantseva) A. A., “Svedenie zadachi o polnote sistem eksponent iz vypukloi oblasti s gladkoi granitsei na krug”, Materialy mezhdunarodn. konf. “Nelineinye uravneniya i kompleksnyi analiz”, Tez. dokl. (Ufa, 18–22 marta 2013), Izd-vo In-ta matem. s VTs UNTs RAN, 2013, 40–41

[20] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, Matem. sb., 180:5 (1989), 706–719 | MR | Zbl

[21] Khabibullin B. N., “O roste vdol pryamoi tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami”, Anal. Math., 17:3 (1991), 239–256 | DOI | MR | Zbl