Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_3_a5, author = {I. A. Zelenskaya}, title = {A system of singularly perturbed equations with differential turning point of the 1st kind}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {63--74}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_3_a5/} }
TY - JOUR AU - I. A. Zelenskaya TI - A system of singularly perturbed equations with differential turning point of the 1st kind JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 63 EP - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_3_a5/ LA - ru ID - IVM_2015_3_a5 ER -
I. A. Zelenskaya. A system of singularly perturbed equations with differential turning point of the 1st kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2015), pp. 63-74. http://geodesic.mathdoc.fr/item/IVM_2015_3_a5/
[1] Wasow W., Linear turning point theory, Springer-Verlag, N.Y., 1985 | MR | Zbl
[2] Bobochko V. M., Perestyuk M. O., Asimptotichne integruvannya rivnyannya Liuvillya z tochkami zvorotu, Nauk. dumka, Kiiv, 2002 | Zbl
[3] Lin C. C., Rabenstein A. L., “On the asymptotic theory of a class of ordinary differential equations of fourth order. II. Existense of solutions which are approximated by the formal solutions”, Stud. Appl. Math., 48:4 (1969), 311–340 | MR | Zbl
[4] Nakano M., Nishimoto T., “On an asymptotic expansion of solutions of ORR-Sommerfeld type equation”, Lect. Notes Math., 243, 1971, 315–319 | DOI | MR | Zbl
[5] Nishimoto T., “A turning point problem of an $n$-th order differential equation of hydrodynamic type”, Kōdai Math. Semin. Rep., 20:3 (1968), 218–256 | DOI | MR | Zbl
[6] Langer R. E., “On the asymptotic forms of ordinary differential equations of the third order in a region containing a turning point”, Trans. Amer. Math. Soc., 80:1 (1955), 93–123 | DOI | MR | Zbl
[7] Langer R. E., “The solutions of a class of linear ordinary differential equations of the third order in a region containing a multiple turning point”, Duke. Math. J., 23:1 (1956), 93–110 | DOI | MR | Zbl
[8] Bragg R. E., “Fundamental solutions of linear ordinary differential equation of the third order in the neighborhood of single second order turning point”, Duke. Math. J., 25:2 (1958), 239–254 | DOI | MR
[9] Bobochko V. N., “Differentsialnaya tochka povorota v teorii singulyarnykh vozmuschenii. I”, Izv. vuzov. Matem., 2002, no. 3, 3–14 | MR | Zbl
[10] Bobochko V. N., “Differentsialnaya tochka povorota v teorii singulyarnykh vozmuschenii. II”, Izv. vuzov. Matem., 2002, no. 5, 3–13 | MR | Zbl
[11] Hsieh P. F., “A turning point problem for a system of linear ordinary differential equations of the third order”, Arch. Rational Mech. Anal., 19:2 (1965), 117–148 | DOI | MR | Zbl
[12] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh uravnenii vtorogo poryadka”, UMN, 7:6 (1952), 3–96 | MR | Zbl