Classification of control ensembles of projective points
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2015), pp. 28-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to classify non-ordered sets of complex projective points with control parameter on the line with respect to projective transformations. This problem is equivalent to the problem of classifying binary forms, whose coefficients depend on control parameter, with respect to the action of some pseudogroup. We solve this problem in two steps. Firstly, we consider the action of our pseudogroup on the infinite prolongation of the differential Euler equation and find differential invariant algebra of this action. Secondly, using methods from geometric theory of differential equations, we prove that three dependencies between basic differential invariants and their invariant derivatives uniquely define the equivalent class of binary forms with control parameter.
Keywords: projective point, control parameter, binary form, differential invariant.
Mots-clés : jet space
@article{IVM_2015_3_a2,
     author = {P. V. Bibikov},
     title = {Classification of control ensembles of projective points},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--34},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_3_a2/}
}
TY  - JOUR
AU  - P. V. Bibikov
TI  - Classification of control ensembles of projective points
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 28
EP  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_3_a2/
LA  - ru
ID  - IVM_2015_3_a2
ER  - 
%0 Journal Article
%A P. V. Bibikov
%T Classification of control ensembles of projective points
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 28-34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_3_a2/
%G ru
%F IVM_2015_3_a2
P. V. Bibikov. Classification of control ensembles of projective points. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2015), pp. 28-34. http://geodesic.mathdoc.fr/item/IVM_2015_3_a2/

[1] Bibikov P. V., Lychagin V. V., “$\mathrm{GL}_2(\mathbb C)$-orbity binarnykh form”, Dokl. RAN, 435:4 (2010), 439–440 | Zbl

[2] Bibikov P. V., Lychagin V. V., “$\mathrm{GL}_2(\mathbb C)$-orbits of binary rational forms”, Lobachevskii J. Math., 32:1 (2011), 95–102 | DOI | MR | Zbl

[3] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl

[4] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Fundament. napravleniya, 28, VINITI, M., 1988, 5–289 | MR | Zbl

[5] Kushner A. G., Lychagin V. V., “Petrov invariants for $1-D$ control hamiltonian systems”, Global and Stochastic Analysis, 2:1 (2012), 241–264

[6] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78:2 (1956), 401–443 | DOI | MR | Zbl