Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 18-29

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hardy operator transforming a sequence of Fourier coefficients of a function to a sequence of its arithmetic means is well-known in harmonic analysis. In the present paper we consider the Hardy–Goldberg operator generalizing Hardy operator and its conjugate operator. We prove the boundedness of Hardy–Goldberg operator in real Hardy space and of its analog in Hardy space on disc. We establish the boundedness of conjugate Hardy–Goldberg operator in periodic $BMO$ and $VMO$ operators.
Keywords: Hardy–Goldberg operator, $L^p$ space, real Hardy space, $BMO$, $VMO$.
@article{IVM_2015_2_a2,
     author = {S. S. Volosivets},
     title = {Hardy--Goldberg operator and its conjugate one in {Hardy} spaces and~$BMO(\mathbb T)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--29},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 18
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/
LA  - ru
ID  - IVM_2015_2_a2
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 18-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/
%G ru
%F IVM_2015_2_a2
S. S. Volosivets. Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 18-29. http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/