Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hardy operator transforming a sequence of Fourier coefficients of a function to a sequence of its arithmetic means is well-known in harmonic analysis. In the present paper we consider the Hardy–Goldberg operator generalizing Hardy operator and its conjugate operator. We prove the boundedness of Hardy–Goldberg operator in real Hardy space and of its analog in Hardy space on disc. We establish the boundedness of conjugate Hardy–Goldberg operator in periodic $BMO$ and $VMO$ operators.
Keywords: Hardy–Goldberg operator, $L^p$ space, real Hardy space, $BMO$, $VMO$.
@article{IVM_2015_2_a2,
     author = {S. S. Volosivets},
     title = {Hardy--Goldberg operator and its conjugate one in {Hardy} spaces and~$BMO(\mathbb T)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--29},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 18
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/
LA  - ru
ID  - IVM_2015_2_a2
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 18-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/
%G ru
%F IVM_2015_2_a2
S. S. Volosivets. Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 18-29. http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/

[1] Hardy G. H., “Notes on some points in the integral calculus”, Messenger Math., 49 (1919), 149–155

[2] Hardy G. H., “Notes on some points in the integral calculus. LXVI”, Messenger Math., 58 (1928), 50–52 | Zbl

[3] Bellman R., “A note on a theorem of Hardy on Fourier constants”, Bull. Amer. Math. Soc., 50:10 (1944), 741–744 | DOI | MR | Zbl

[4] Loo C.-T., “Transformations of Fourier coefficients”, Amer. J. Math., 71:2 (1949), 269–282 | DOI | MR | Zbl

[5] Konyushkov A. A., “O klassakh Lipshitsa”, Izv. AN SSSR. Cer. matem., 21:3 (1957), 423–448 | MR | Zbl

[6] Alshynbaeva E., “O preobrazovaniyakh koeffitsientov Fure nekotorykh klassov funktsii”, Matem. zametki, 25:5 (1979), 645–651 | MR | Zbl

[7] Siskakis A. G., “Composition semi-groups and the Cèsaro operator on $H^p$”, J. London Math. Soc., 36:1 (1987), 153–164 | DOI | MR | Zbl

[8] Siskakis A. G., “The Cèsaro operator is bounded on $H^1$”, Proc. Amer. Math. Soc., 110:2 (1990), 461–462 | MR | Zbl

[9] Stempak K., “Cèsaro averaging operators”, Proc. Royal Soc. Edinburgh Sect. A, 124 (1994), 121–126 | DOI | MR | Zbl

[10] Giang D. V., Moricz F., “The Cèsaro operator is bounded on the Hardy space”, Acta Sci. Math. (Szeged), 61:3–4 (1995), 535–544 | MR | Zbl

[11] Golubov B. I., “On boundedness of the Hardy and Bellman operators in the spaces $H$ and $BMO$”, Numer. Funct. Anal. Optimiz., 21:1 (2000), 145–158 | DOI | MR | Zbl

[12] Xiao J., “Cesàro transforms of Fourier coefficients of $L^\infty$-functions”, Proc. Amer. Math. Soc., 125:12 (1997), 3613–3616 | DOI | MR | Zbl

[13] Moricz F., “The harmonic Cesàro and Copson operators on the spaces $L^p$, $1\leq p\leq\infty$, $H^1$ and $BMO$”, Acta Sci. Math. (Szeged), 65:1–2 (1999), 293–310 | MR | Zbl

[14] Volosivets S. S., Golubov B. I., “Operatory Khardi i Bellmana v prostranstvakh, svyazannykh s $H(\mathbb T)$ i $BMO(\mathbb T)$”, Izv. vuzov. Matem., 2008, no. 5, 4–13 | MR | Zbl

[15] Goldberg R. R., “Averages of Fourier coefficients”, Pacific J. Math., 9:3 (1959), 695–699 | DOI | MR | Zbl

[16] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[17] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl

[18] Sarason D., “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207:2 (1975), 391–405 | DOI | MR | Zbl

[19] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[20] Bergh J., “Functions of bounded mean oscillation and Hausdorff–Young type theorems”, Lect. Notes in Math., 1302, 1988, 130–136 | DOI | MR | Zbl

[21] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[22] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl

[23] Khardi G., Littlvud Dzh., Polia G., Neravenstva, In. lit., M., 1948

[24] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl