Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 18-29
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hardy operator transforming a sequence of Fourier coefficients of a function to a sequence of its arithmetic means is well-known in harmonic analysis. In the present paper we consider the Hardy–Goldberg operator generalizing Hardy operator and its conjugate operator. We prove the boundedness of Hardy–Goldberg operator in real Hardy space and of its analog in Hardy space on disc. We establish the boundedness of conjugate Hardy–Goldberg operator in periodic $BMO$ and $VMO$ operators.
Keywords:
Hardy–Goldberg operator, $L^p$ space, real Hardy space, $BMO$, $VMO$.
@article{IVM_2015_2_a2,
author = {S. S. Volosivets},
title = {Hardy--Goldberg operator and its conjugate one in {Hardy} spaces and~$BMO(\mathbb T)$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {18--29},
publisher = {mathdoc},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/}
}
TY - JOUR AU - S. S. Volosivets TI - Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 18 EP - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/ LA - ru ID - IVM_2015_2_a2 ER -
S. S. Volosivets. Hardy--Goldberg operator and its conjugate one in Hardy spaces and~$BMO(\mathbb T)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 18-29. http://geodesic.mathdoc.fr/item/IVM_2015_2_a2/