Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 14-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the convex programming problem in a reflexive space with operator equality constraint and finite number of functional inequality constraints. For this problem we prove the stable with respect to the errors in the initial data Lagrange principle in sequential nondifferential form. It is shown that the sequential approach and dual regularization significantly expand a class of optimization problems that can be solved on a base of the classical design of the Lagrange function. We discuss the possibility of its applicability for solving unstable optimization problems.
Keywords: convex programming, sequential optimization, Lagrange principle, stability, duality, regularization, optimal boundary control.
@article{IVM_2015_1_a1,
     author = {A. A. Gorshkov and M. I. Sumin},
     title = {Stable {Lagrange} principle in sequential form for the problem of convex programming in uniformly convex space and its applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--28},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/}
}
TY  - JOUR
AU  - A. A. Gorshkov
AU  - M. I. Sumin
TI  - Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 14
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/
LA  - ru
ID  - IVM_2015_1_a1
ER  - 
%0 Journal Article
%A A. A. Gorshkov
%A M. I. Sumin
%T Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 14-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/
%G ru
%F IVM_2015_1_a1
A. A. Gorshkov; M. I. Sumin. Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 14-28. http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/