Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 14-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the convex programming problem in a reflexive space with operator equality constraint and finite number of functional inequality constraints. For this problem we prove the stable with respect to the errors in the initial data Lagrange principle in sequential nondifferential form. It is shown that the sequential approach and dual regularization significantly expand a class of optimization problems that can be solved on a base of the classical design of the Lagrange function. We discuss the possibility of its applicability for solving unstable optimization problems.
Keywords: convex programming, sequential optimization, Lagrange principle, stability, duality, regularization, optimal boundary control.
@article{IVM_2015_1_a1,
     author = {A. A. Gorshkov and M. I. Sumin},
     title = {Stable {Lagrange} principle in sequential form for the problem of convex programming in uniformly convex space and its applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--28},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/}
}
TY  - JOUR
AU  - A. A. Gorshkov
AU  - M. I. Sumin
TI  - Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 14
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/
LA  - ru
ID  - IVM_2015_1_a1
ER  - 
%0 Journal Article
%A A. A. Gorshkov
%A M. I. Sumin
%T Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 14-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/
%G ru
%F IVM_2015_1_a1
A. A. Gorshkov; M. I. Sumin. Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 14-28. http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/

[1] Vasilev F. P., Metody optimizatsii, V 2-kh kn., MTsMNO, M., 2011

[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[3] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[4] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[5] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl

[6] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya, Materialy k lektsiyam dlya studentov starshikh kursov, Izd-vo Nizhegorodsk. gos. un-ta, N. Novgorod, 2009

[7] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl

[8] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, Special issue “Optimization” (2012), 1334–1350 | DOI

[9] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[10] Sumin M. I., “Ob ustoichivom sekventsialnom printsipe Lagranzha v vypuklom programmirovanii i ego primenenii pri reshenii neustoichivykh zadach”, Tr. In-ta matem. i mekhan. UrO RAN, 19, no. 4, 2013, 231–240

[11] Vladimirov A. A., Nesterov Yu. E., Chekanov Yu. N., “O ravnomerno vypuklykh funktsionalakh”, Vestn. Moskovsk. un-ta. Ser. vych. matem. i kibern., 1978, no. 3, 12–23 | MR | Zbl

[12] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[13] Danford N., Shvarts Dzh., Lineinye operatory, v. I, Obschaya teoriya, In. lit., M., 1962

[14] S. G. Krein (red.), Funktsionalnyi analiz, Ser. “Spravochnaya matem. bibl.”, Nauka, M., 1972 | MR | Zbl

[15] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space, I: Theory”, Can. J. Math., 38:2 (1986), 431–452 | DOI | MR | Zbl

[16] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space, II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl

[17] Mordukhovich B. S., Variational analysis and generalized differentiation, v. I, Basic theory, Springer, Berlin, 2006 | MR

[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[19] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl

[20] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[21] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, DAN SSSR, 165:1 (1965), 33–35 | MR | Zbl

[22] Casas E., Raymond J.-P., Zidani H., “Pontryagin's principle for local solutions of control problems with mixed control-state constraints”, SIAM J. Control Optim., 39:4 (2000), 1182–1203 | DOI | MR | Zbl

[23] Sumin M. I., “Dvoistvennaya regulyarizatsiya i printsip maksimuma Pontryagina v zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s nedifferentsiruemymi funktsionalami”, Tr. In-ta matem. i mekhan. UrO RAN, 17, no. 1, 2011, 229–244 | Zbl