Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_1_a1, author = {A. A. Gorshkov and M. I. Sumin}, title = {Stable {Lagrange} principle in sequential form for the problem of convex programming in uniformly convex space and its applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {14--28}, publisher = {mathdoc}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/} }
TY - JOUR AU - A. A. Gorshkov AU - M. I. Sumin TI - Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 14 EP - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/ LA - ru ID - IVM_2015_1_a1 ER -
%0 Journal Article %A A. A. Gorshkov %A M. I. Sumin %T Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 14-28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/ %G ru %F IVM_2015_1_a1
A. A. Gorshkov; M. I. Sumin. Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 14-28. http://geodesic.mathdoc.fr/item/IVM_2015_1_a1/
[1] Vasilev F. P., Metody optimizatsii, V 2-kh kn., MTsMNO, M., 2011
[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[3] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR
[4] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR
[5] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[6] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya, Materialy k lektsiyam dlya studentov starshikh kursov, Izd-vo Nizhegorodsk. gos. un-ta, N. Novgorod, 2009
[7] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[8] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, Special issue “Optimization” (2012), 1334–1350 | DOI
[9] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[10] Sumin M. I., “Ob ustoichivom sekventsialnom printsipe Lagranzha v vypuklom programmirovanii i ego primenenii pri reshenii neustoichivykh zadach”, Tr. In-ta matem. i mekhan. UrO RAN, 19, no. 4, 2013, 231–240
[11] Vladimirov A. A., Nesterov Yu. E., Chekanov Yu. N., “O ravnomerno vypuklykh funktsionalakh”, Vestn. Moskovsk. un-ta. Ser. vych. matem. i kibern., 1978, no. 3, 12–23 | MR | Zbl
[12] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[13] Danford N., Shvarts Dzh., Lineinye operatory, v. I, Obschaya teoriya, In. lit., M., 1962
[14] S. G. Krein (red.), Funktsionalnyi analiz, Ser. “Spravochnaya matem. bibl.”, Nauka, M., 1972 | MR | Zbl
[15] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space, I: Theory”, Can. J. Math., 38:2 (1986), 431–452 | DOI | MR | Zbl
[16] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space, II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl
[17] Mordukhovich B. S., Variational analysis and generalized differentiation, v. I, Basic theory, Springer, Berlin, 2006 | MR
[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[19] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl
[20] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[21] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, DAN SSSR, 165:1 (1965), 33–35 | MR | Zbl
[22] Casas E., Raymond J.-P., Zidani H., “Pontryagin's principle for local solutions of control problems with mixed control-state constraints”, SIAM J. Control Optim., 39:4 (2000), 1182–1203 | DOI | MR | Zbl
[23] Sumin M. I., “Dvoistvennaya regulyarizatsiya i printsip maksimuma Pontryagina v zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s nedifferentsiruemymi funktsionalami”, Tr. In-ta matem. i mekhan. UrO RAN, 17, no. 1, 2011, 229–244 | Zbl